Time Constrained Temporal Logic Control of Multi Affine Systems

Download
2012-01-01
In this paper, we consider the problem of controlling a dynamical system such that its trajectories satisfy a temporal logic property in a given amount of time. We focus on multiaffine systems and specifications given as syntactically co-safe linear temporal logic formulas over rectangular regions in the state space. The proposed algorithm is based on the estimation of time bounds for facet reachability problems and solving a time optimal reachability problem on the product between a weighted transition system and an automaton that enforces the satisfaction of the specification. A random optimization algorithm is used to iteratively improve the solution.

Suggestions

Time-constrained temporal logic control of multi-affine systems
Aydın Göl, Ebru (Elsevier BV, 2013-11-01)
In this paper, we consider the problem of controlling a dynamical system such that its trajectories satisfy a temporal logic property in a given amount of time. We focus on multi-affine systems and specifications given as syntactically co-safe linear temporal logic formulas over rectangular regions in the state space. The proposed algorithm is based on estimating the time bounds for facet reachability problems and solving a time optimal reachability problem on the product between a weighted transition syste...
Scalar waves in spacetimes with closed timelike curves
Buğdaycı, Necmi; Başkal, Sibel; Department of Physics (2005)
The existence and -if exists- the nature of the solutions of the scalar wave equation in spacetimes with closed timelike curves are investigated. The general properties of the solutions on some class of spacetimes are obtained. Global monochromatic solutions of the scalar wave equation are obtained in flat wormholes of dimensions 2+1 and 3+1. The solutions are in the form of infinite series involving cylindirical and spherical wave functions and they are elucidated by the multiple scattering method. Explici...
Time scale extensions of a theorem of Wintner on systems with asymptotic equilibrium
Mert, R.; Zafer, Ağacık (Informa UK Limited, 2011-01-01)
Abstract We consider quasilinear dynamic systems of the form[image omitted]where is a time scale, and provide extensions of a theorem of Wintner on systems with asymptotic equilibrium to arbitrary time scales. More specifically, we give sufficient conditions for the asymptotic equilibrium of the above system in the sense that for any given constant vector c, there is a solution satisfying[image omitted] Our results are new for difference equations, q-difference equations and many other time scale systems ev...
Finite bisimulations for switched linear systems
Aydın Göl, Ebru; Lazar, Mircea; Belta, Calin (2013-02-04)
In this paper, we consider the problem of constructing a finite bisimulation quotient for a discrete-time switched linear system in a bounded subset of its state space. Given a set of observations over polytopic subsets of the state space and a switched linear system with stable subsystems, the proposed algorithm generates the bisimulation quotient in a finite number of steps with the aid of sublevel sets of a polyhedral Lyapunov function. Starting from a sublevel set that includes the origin in its interio...
Finite Bisimulations for Switched Linear Systems
Aydın Göl, Ebru; Lazar, Mircea; Belta, Calin (2014-12-01)
In this paper, we consider the problem of constructing a finite bisimulation quotient for a discrete-time switched linear system in a bounded subset of its state space. Given a set of observations over polytopic subsets of the state space and a switched linear system with stable subsystems, the proposed algorithm generates the bisimulation quotient in a finite number of steps with the aid of sublevel sets of a polyhedral Lyapunov function. Starting from a sublevel set that includes the origin in its interio...
Citation Formats
E. Aydın Göl, “Time Constrained Temporal Logic Control of Multi Affine Systems,” 2012, vol. 45, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35534.