Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Visual detection and tracking of moving objects
Date
2007-06-13
Author
Ergezer, Hamza
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
236
views
0
downloads
Cite This
In this paper, primary steps of a visual surveillance system are presented: moving object detection and tracking of these moving objects. Running average method has been used to detect the moving objects in the video, which is taken from a static camera. Tracking of foreground objects has been realized by using a Kalman filter. After background subtraction, morphological operators are used to remove noises detected as foreground. Active contour models (snakes) are the segmentation tools for the extracted foregrounds. Snakes have been also used as an extra tool for object tracking.
Subject Keywords
Active contours
,
Background noise
,
Cameras
,
Surveillance
,
Kalman filters
,
Gaussian processes
,
Object detection
URI
https://hdl.handle.net/11511/35571
DOI
https://doi.org/10.1109/siu.2007.4298624
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Visual detection and tracking of moving objects
Ergezer, Hamza; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2007)
In this study, primary steps of a visual surveillance system are presented: moving object detection and tracking of these moving objects. Background subtraction has been performed to detect the moving objects in the video, which has been taken from a static camera. Four methods, frame differencing, running (moving) average, eigenbackground subtraction and mixture of Gaussians, have been used in the background subtraction process. After background subtraction, using some additional operations, such as morpho...
Scale invariant representation of 2 5D data
AKAGUNDUZ, Erdem; ULUSOY PARNAS, İLKAY; BOZKURT, Nesli; Halıcı, Uğur (2007-06-13)
In this paper, a scale and orientation invariant feature representation for 2.5D objects is introduced, which may be used to classify, detect and recognize objects even under the cases of cluttering and/or occlusion. With this representation a 2.5D object is defined by an attributed graph structure, in which the nodes are the pit and peak regions on the surface. The attributes of the graph are the scales, positions and the normals of these pits and peaks. In order to detect these regions a "peakness" (or pi...
A multimodal approach for individual tracking of people and their belongings
Beyan, Çiğdem; Temizel, Alptekin (2015-04-01)
In this study, a fully automatic surveillance system for indoor environments which is capable of tracking multiple objects using both visible and thermal band images is proposed. These two modalities are fused to track people and the objects they carry separately using their heat signatures and the owners of the belongings are determined. Fusion of complementary information from different modalities (for example, thermal images are not affected by shadows and there is no thermal reflection or halo effect in...
3D Extended Object Tracking Using Recursive Gaussian Processes
Kumru, Murat; Özkan, Emre (2018-07-10)
In this study, we consider the challenging task of tracking dynamic 3D objects with unknown shapes by using sparse point cloud measurements gathered from the surface of the objects. We propose a Gaussian process based algorithm that is capable of tracking the dynamic behavior of the object and learn its shape in 3D simultaneously. Our solution does not require any parametric model assumption for the unknown shape. The shape of the objects is learned online via a Gaussian process. The proposed method can joi...
Comparison of Infrared and Visible Imagery for Object Tracking: Toward Trackers with Superior IR Performance
Gundogdu, Erhan; Ozkan, Huseyin; Demir, H. Seckin; Ergezer, Hamza; Akagündüz, Erdem; Pakin, S. Kubilay (2015-01-01)
The subject of this paper is the visual object tracking in infrared (IR) videos. Our contribution is twofold. First, the performance behaviour of the state-of-the-art trackers is investigated via a comparative study using IR-visible band video conjugates, i.e., video pairs captured observing the same scene simultaneously, to identify the IR specific challenges. Second, we propose a novel ensemble based tracking method that is tuned to IR data. The proposed algorithm sequentially constructs and maintains a d...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Ergezer and M. K. Leblebicioğlu, “Visual detection and tracking of moving objects,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35571.