Synthesis of star-shaped pyrrole and thiophene functionalized monomers and optoelectrochemical properties of corresponding copolymers

Star-shaped thiophene and pyrrole functionalized monomers namely 2,4,6-tris(4-(1H-pyrrol-1-yl)phenoxy)-1,3,5-triazine (TriaPy) and 2,4,6-tris(4-(1H-pyrrol-1-yl)phenoxy)-1,3,5-triazine (TriaTh) were synthesized from 2,4,6-trichloro-1,3,5-triazine, thiophen-3-ylmethanol and 4-(1H-pyrrol-1-yl)phenol. Electrochemical copolymerization of monomers with thiophene and pyrrole was achieved in tetrabutylammonium tetrafluoroborate/acetonitrile (TBAFB/AN). Resulting copolymers were characterized by Fourier transform infrared (FTIR) spectrometer, cyclic voltammetry (CV) and conductivity measurements. Spectroelectrochemical analysis reflected that copolymer films have low lambda(max) for pi-pi* electronic transitions accompanied with a rather high band gap compared to polythiophene and polypyrrole. Switching abilities of copolymer films were evaluated by a kinetic study via measuring the transmittance (%T) at the maximum contrast.