Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Damage detection in a sandwich composite beam using wavelet transforms
Date
2003-01-01
Author
Dawood, TA
Shenoi, RA
Veres, SM
Şahin, Melin
Gunning, MJ
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
35
views
0
downloads
Cite This
There is a growing interest in developing non-destructive damage detection methods for damage assessment of composite structures, especially in the aerospace and marine industries. Although damage detection of composite laminates has been widely investigated, little work has been carried out on sandwich composite configurations. A technique using the Lipschitz exponent, which is estimated by wavelet transforms, as a damage sensitive signal feature is outlined here to identify damage in sandwich composites. It is based on the fact that damage causes singularities to appear in the structure's dynamic response which can be identified, and its severity estimated, using the Lipschitz exponent. In order to demonstrate this technique, damage in cantilevered fibre reinforced plastic (FRP) sandwich beams is investigated both numerically and experimentally.
Subject Keywords
Damage detection
,
Lipschitz exponent
,
Wavelet transform
,
Mode shapes
URI
https://hdl.handle.net/11511/35646
DOI
https://doi.org/10.1117/12.482823
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Multidisciplinary design of an unmanned aerial vehicle wing
Sakarya, Arzu; Yaman, Yavuz; Department of Aerospace Engineering (2011)
In this thesis, the structural design, structural analysis and producibility analysis of an unmanned aerial vehicle wing were performed. Three different wing models, made of different materials, were designed. The wings were aluminum wing model and composite wing models; made of prepreg and wet lay-up. All wings have the same aerodynamic geometry and structural configuration under the same flight conditions. The structural designs of three wings were done by using Unigraphics NX. The finite element modeling...
Structural and aeroelastic analyses of a composite tactical unmanned air vehicle
Özöztürk, Sedat; Kayran, Altan; Tamer, Aykut; Department of Aerospace Engineering (2011)
In this thesis, computational aerodynamics, structural and aeroelastic analyses of the composite tactical unmanned air vehicle which is designed and manufactured in the Department of Aerospace Engineering are performed. Verification of the structural integrity of the air vehicle is shown at the minimum maneuvering and the dive speeds at the static limit loads which are calculated by the computational aerodynamics analysis of the full aircraft model. In the current work, aerodynamic loads are re-calculated f...
Design Optimization of Variable Stiffness Composite Laminates Using Surrogate Models for Compliance and Buckling Load
İnci, Hasan; Kayran, Altan (2017-09-22)
Usage of composite materials in aerospace industry has never been so wide in our world. Starting from the development of composites, the analyses were only done for straight fiber composites. With the improved manufacturing capabilities, designers have the ability to design more complex shapes for composites, which allows more efficient structures. In the past two decades, variable stiffness (VS) composite laminates are introduced to the literature. Within these two decades, researchers working on VS concep...
Structural design, analysis and composite manufacturing applications for a tactical unmanned air vehicle
Soysal, Sercan; Kayran, Altan; Department of Aerospace Engineering (2008)
In this study structural design, analysis and composite manufacturing applications for a tactical UAV, which was designed and manufactured in Aerospace Engineering Department of Middle East Technical University (METU), is introduced. In order to make an accurate structural analysis, the material and loading is modeled properly. Computational fluid dynamics (CFD) was used to determine the 3D pressure distribution around the wing and then the nodal forces were exported into the finite element program by means...
Damage Progression in Thick Curved Composite Laminates under Static and Fatigue Loading
Tasdemir, B.; Çöker, Demirkan (IOP Publishing; 2018-06-22)
In this study, damage behavior of curved carbon fiber reinforced polymer (CFRP) composite laminates that are important sub-structures (ribs, shear webs and spar flanges etc.) for wind turbine blades are investigated under static and fatigue loading conditions. Cross-ply curved specimen consisting of groups of three 0 degrees and 90 degrees layers is used for clear observation of the matrix cracking in thicker plies. Damage mechanisms and locations under static and fatigue loadings are examined. In the exper...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Dawood, R. Shenoi, S. Veres, M. Şahin, and M. Gunning, “Damage detection in a sandwich composite beam using wavelet transforms,” 2003, vol. 5049, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35646.