Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Recursion operator and dispersionless rational Lax representation
Download
index.pdf
Date
2002-05-01
Author
Zheltukhın, Kostyantyn
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
134
views
0
downloads
Cite This
We consider equations arising from dispersionless rational Lax representations. A general method to construct recursion operators for such equations is given. Several examples are given, including a degenerate bi-Hamiltonian system with a recursion operator
Subject Keywords
Integrable system
,
Recursion operator
URI
https://hdl.handle.net/11511/35803
Journal
Physics Letters A
DOI
https://doi.org/10.1016/s0375-9601(02)00374-2
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Differential - Operator solutions for complex partial differential equations
Celebi, O; Sengul, S (1998-07-10)
The solutions of complex partial differential equations of order four are obtained by using polynomial differential operators. A correspondence principle is also derived for the solutions of two different differential equations, imposing conditions on the coefficients.
Asymptotic integration of second-order nonlinear differential equations via principal and nonprincipal solutions
Ertem, T.; Zafer, Ağacık (2013-02-01)
Let u and v denote respectively the principal and nonprincipal solutions of the second-order linear equation (p(t)x')' + q(t)x = 0 defined on some half-line of the form [t(*), infinity).
Asymptotic Behavior of Lotz-Rabiger and Martingale Nets
Emelyanov, Eduard (2010-09-01)
Using Theorem 1 (of convergence) in [1], we prove several results on LR- and M-nets by a unified approach to these nets that appear as the two extreme types of asymptotically abelian nets.
Nonlocal hydrodynamic type of equations
Gürses, Metin; Pekcan, Asli; Zheltukhın, Kostyantyn (Elsevier BV, 2020-06-01)
We show that the integrable equations of hydrodynamic type admit nonlocal reductions. We first construct such reductions for a general Lax equation and then give several examples. The reduced nonlocal equations are of hydrodynamic type and integrable. They admit Lax representations and hence possess infinitely many conserved quantities.
PROLONGATION STRUCTURE AND PAINLEVE PROPERTY OF THE GURSES-NUTKU EQUATIONS
Kalkanlı, AK (Springer Science and Business Media LLC, 1987-11)
It is shown that the Gürses-Nutku equations have a finite prolongation algebra for any value of the parameterK. The Painlevé property of these equations is also examined.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Zheltukhın, “Recursion operator and dispersionless rational Lax representation,”
Physics Letters A
, pp. 402–407, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35803.