Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane
Date
2016-01-01
Author
Akbayrak, Serdar
Tonbul, Yalcin
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
156
views
0
downloads
Cite This
Ruthenium(0) nanoparticles supported on ceria (Ru-0/CeO2) were in situ generated from the reduction of ruthenium(III) ions impregnated on ceria during the hydrolysis of ammonia borane. Ru-0/CeO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, BET, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on ceria and the resulting Ru-0/CeO2 is a highly active, reusable and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 361 min(-1). The reusability tests reveal that Ru-0/CeO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 60% of the initial catalytic activity even after the fifth run. Ru-0/CeO2 provides a superior catalytic lifetime (TTO = 135 100) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 +/- 0.1 degrees C before deactivation. The work reported here includes the formation kinetics of ruthenium(0) nanoparticles. The rate constants for the slow nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles were obtained using hydrogen evolution as a reporter reaction. An evaluation of rate constants at various temperatures enabled the estimation of activation energies for both the reactions, E-a = 60 +/- 7 kJ mol(-1) for the nucleation and E-a = 47 +/- 2 kJ mol(-1) for the autocatalytic surface growth of ruthenium(0) nanoparticles, as well as the activation energy of E-a = 51 +/- 2 kJ mol(-1) for the catalytic hydrolysis of ammonia borane.
Subject Keywords
Metal nanocluster formation
,
Coated cobalt ferrite
,
Efficient catalyst
,
Reusable catalyst
,
Stabilized ruthenium(0)
,
Facile synthesis
,
Dehydrogenation
,
Ru
,
Oxidation
,
Mechanism
URI
https://hdl.handle.net/11511/35887
Journal
DALTON TRANSACTIONS
DOI
https://doi.org/10.1039/c6dt01117a
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Ceria supported ruthenium nanoparticles: Remarkable catalyst for H-2 evolution from dimethylamine borane
KARABOĞA, SEDA; Özkar, Saim (Elsevier BV, 2019-10-08)
Ceria supported ruthenium nanoparticles (Ru-0/CeO2) are synthesized by impregnation of Ru3+ ions on CeO2 powders followed by sodium borohydride reduction of Ru3+/CeO2. Their characterization was achieved using analytical methods including TEM, XRD, BET, SEM, and XPS. All the results reveal the formation of ruthenium(0) nanoparticles in 1.8 +/- 0.3 nm size on CeO2 support. Ru-0/GeO2 nanoparticles show high activity in catalyzing the H-2 evolution from dimethylamine borane (DMAB). Ru-0/CeO2 nanoparticles with...
Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Tonbul, Yalcin; Özkar, Saim (2016-12-05)
We investigated the effect of various oxide supports on the catalytic activity of rhodium nanoparticles in hydrogen generation from the hydrolysis of ammonia borane. Among the oxide supports (CeO2, SiO2, Al2O3, TiO2, ZrO2, HfO2) ceria provides the highest catalytic activity for the rhodium(0) nanoparticles in the hydrolysis of ammonia borane. Rhodium(0) nanoparticles supported on nanoceria (Rh-0/CeO2) were prepared by the impregnation of rhodium(III) ions on the surface of ceria followed by their reduction ...
Ceria Supported Nickel(0) Nanoparticles: A Highly Active and Low Cost Electrocatalyst for Hydrogen Evolution Reaction
Demir Arabacı, Elif; Önal, Ahmet Muhtar; Özkar, Saim (2020-06-01)
Herein, we report the development of a nickel-based catalyst obtained by reduction of Ni(2+)ions on the surface of ceria nanopowder using aqueous solution of NaBH4. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). Nickel(0) nanoparticles supported on nanoceria (Ni-0/CeO2) were employed as electrocatalyst on glassy carbon electrode (GCE) for H(2)evolution reaction. The modified...
Palladium(0) nanoparticles supported on polydopamine coated Fe3O4 as magnetically isolable, highly active and reusable catalysts for hydrolytic dehydrogenation of ammonia borane
Manna, Joydev; Akbayrak, Serdar; Özkar, Saim (2016-01-01)
Magnetic ferrite nanopowders were coated with polydopamine which is inert against the hydrolysis of ammonia borane. Coating of ferrite powders was achieved by pH-induced self-polymerization of dopamine hydrochloride at room temperature. Palladium(0) nanoparticles supported on polydopamine coated ferrite (Pd-0/PDA-Fe3O4) were prepared by impregnation of palladium(II) ions on the surface of PDA-Fe3O4 followed by their reduction with sodium borohydride in aqueous solution at room temperature. Magnetically isol...
Ceria supported ruthenium(0) nanoparticles: Highly efficient catalysts in oxygen evolution reaction
Demir Arabacı, Elif; Önal, Ahmet Muhtar; Özkar, Saim (2019-01-15)
Ruthenium(0) nanoparticles were successfully prepared on the surface of ceria (Ru-0/CeO2) and used as catalysts on glassy carbon electrode (GCE) in oxygen evolution reaction (OER) from water electrolysis at room temperature. Ru-0/CeO2 on GCE exhibits high catalytic activity for OER in alkaline solution. It provides a low onset potential of 1.57 V vs. RHE and low overpotential of 420 mV vs. RHE to reach a current density of 10 mA cm(-2). Ru-0/CeO2 on GCE shows no change in the onset potential value even afte...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Akbayrak, Y. Tonbul, and S. Özkar, “Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane,”
DALTON TRANSACTIONS
, pp. 10969–10978, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35887.