Diamond-based capacitive micromachined ultrasonic transducers

2012-02-01
Capacitive micromachined ultrasonic transducers (CMUTs) employing diamond membranes are demonstrated. The design, finite element modeling, microfabrication, and experimental characterization of diamondbased CMUTs are reported. Ultrananocrystalline diamond having a chemical mechanical polished silicon dioxide interlayer deposited via high temperature oxide (HTO) process at 850 degrees C in a low pressure chemical vapor deposition (LPCVD) furnace is employed as the membrane to form vacuum sealed cavities using plasma-activated direct bonding technology. Electrical impedance, deflection, and transmission measurements of a fabricated CMUT are performed in air using an impedance analyzer, a white light interferometer and a hydrophone, respectively. Experimental results verify the accuracy of finite element modeling. Diamond-based CMUTs possess 3-dB fractional bandwidth of 3% at a center frequency of 1.74 MHz in air. Our experimental results demonstrate diamond as an alternate membrane material for CMUTs, and that diamond can be employed in novel microelectromechanical devices.
DIAMOND AND RELATED MATERIALS

Suggestions

Residual stress and Young's modulus measurement of capacitive micromachined ultrasonic transducer membranes
Yaralioglu, GG; Ergun, AS; Bayram, Barış; Marentis, T; Khuri-Yakub, BT (2001-01-01)
Membranes supported by posts are used as vibrating elements of capacitive micromachined ultrasonic transducers (CMUTs). The residual stress built up during the fabrication process determines the transducer properties such as resonance frequency, collapse voltage, and gap distance. Hence, it is important to evaluate and control the stress in thin film CMUT membranes. The residual stress in the membrane causes significant vertical displacements at the center of the membrane. The stress bends the membrane post...
Diamond-Based Capacitive Micromachined Ultrasonic Transducers in Immersion
Cetin, Ahmet Murat; Bayram, Barış (2013-02-01)
Diamond is a superior membrane material for capacitive micromachined ultrasonic transducers (CMUTs). By using ultrananocrystalline diamond (UNCD) membrane and plasma-activated wafer bonding technology, a single diamond-based circular CMUT is demonstrated and operated in immersion for the first time. The diamond-based CMUT, biased at 100 V, is excited with a 10-cycle burst of 36 Vp-p sine signal at 3.5 MHz. Pressure generated on a 2-D plane coincident with the normal of the CMUT is measured using a broadband...
Experimental characterization of collapse-mode CMUT operation
Oralkan, Omer; Bayram, Barış; Yaralioglu, Goksen G.; Ergun, A. Sanli; Kupnik, Mario; Yeh, David T.; Wygant, Ira O.; Khuri-Yakub, Butrus T. (2006-08-01)
This paper reports on the experimental characterization of collapse-mode operation of capacitive micromachined ultrasonic transducers (CMUTs). CMUTs are conventionally operated by applying a direct current (DC) bias voltage less than the collapse voltage of the membrane, so that the membrane is deflected toward the bottom electrode. In the conventional regime, there is no contact between the membrane and the substrate; the maximum alternating current (AC) displacement occurs at the center of the membrane. I...
Dynamic analysis of CMUTs in different regimes of operation
Bayram, Barış; Ergun, AS; Yaralioglu, GG; Khuri-Yakub, BT (2003-01-01)
This paper reports on dynamic analysis of an immersed single capacitive micromachined ultrasonic transducer (CMUT) cell transmitting. A water loaded 24 mum circular silicon membrane of a transducer was modeled. The calculated collapse and snapback voltages were 80 V and 50 V, respectively. The resonance frequency, output pressure and nonlinearity of the CMUT in three regimes of operation were determined. These regimes were: a) the conventional regime in which the membrane does not make contact with the subs...
ACOUSTIC CROSSTALK REDUCTION METHOD FOR CMUT ARRAYS
Bayram, Barış; Kupnik, Mario; Khuri-Yakub, Butrus T. (2006-01-01)
This paper reports on the finite element analysis (FEA) of crosstalk in capacitive micromachined ultrasonic transducer (CMUT) arrays. Finite element calculations using a commercial package (LS-DYNA) were performed for an immersed I-D CMUT array operating in the conventional and collapsed modes. LS-DYNA was used to model the crosstalk in CMUT arrays under specific voltage bias and excitation conditions, and such a modeling is well worth the effort for special-purpose CMUT arrays for ultrasound applications s...
Citation Formats
B. Bayram, “Diamond-based capacitive micromachined ultrasonic transducers,” DIAMOND AND RELATED MATERIALS, pp. 6–11, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35991.