Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A dataset on void ratio limits and their range for cohesionless soils
Date
2019-12-01
Author
Ilgaç, Makbule
Can, Gizem
Çetin, Kemal Önder
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
A database, which consists of maximum and minimum void ratio limits and their range, particle size, distribution and shape characteristics, is compiled. More specifically, minimum and maximum void ratios (e(min) and e(max)) along with their range (e(max)-e(min)), particle roundness (R) and spherecity (S), fines content (FC), coefficient of uniformity (C-u), mean grain size (D-50) data are compiled from natural cohesionless soils and reconstituted grained material (e.g.: rice, glass beads, mica) mixtures. The final dataset is composed of 636, mostly soil samples. Out of 636 samples, 496, 474 and 603 of them have e(max), e(min) or e(max)-e(min) data, respectively. Similarly, for 593, 419, 171, 126 and 93 soils, D-50, C-u, R, S and FC data exists, respectively. Not for every sample, USCS based soil classification designation is available, hence for the missing ones, soil classification is performed based on mean particle diameter-based classification as suggested by ASTM D2487 - 17: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) [1]. The dataset consists of 19 silts and clays, 527 sands (357 fine sands, 153 medium sands, 17 coarse sands) and 47 gravels (44 fine gravels, 3 coarse gravels). A spreadsheet summary of the dataset is provided. This dataset is later used for the development of probability-based void ratio predictive models. (C) 2019 The Author(s). Published by Elsevier Inc.
Subject Keywords
Multidisciplinary
URI
https://hdl.handle.net/11511/36024
Journal
DATA IN BRIEF
DOI
https://doi.org/10.1016/j.dib.2019.104696
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
An Efficient Parallel Solution Framework for the Linear Solution of Large Systems on PC Clusters
Kurç, Özgür (Tsinghua University Press, 2008-10-01)
In this paper, a parallel solution framework for the linear static analysis of large structures on PC clusters is presented. The framework consists of two main steps: data preparation and parallel solution. The parallel solution is performed by a substructure based method with direct solvers. The aim of the data preparation step is to create the best possible substructures so that the parallel solution time is minimized. An actual structural model was solved utilizing both homogeneous and heterogeneous PC c...
Stability analysis of constraints in flexible multibody systems dynamics
İder, Sıtkı Kemal (Elsevier BV, 1990-1)
Automated algorithms for the dynamic analysis and simulation of constrained multibody systems assume that the constraint equations are linearly independent. During the motion, when the system is at a singular configuration, the constraint Jacobian matrix possesses less than full rank and hence it results in singularities. This occurs when the direction of a constraint coincides with the direction of the lost degree of freedom. In this paper the constraint equations for deformable bodies are modified for use...
Hamilton-Jacobi theory of discrete, regular constrained systems
Güler, Y. (Springer Science and Business Media LLC, 1987-8)
The Hamilton-Jacobi differential equation of a discrete system with constraint equationsG α=0 is constructed making use of Carathéodory’s equivalent Lagrangian method. Introduction of Lagrange’s multipliersλ˙α as generalized velocities enables us to treat the constraint functionsG α as the generalized momenta conjugate toλ˙α. Canonical equations of motion are determined.
Numerical and Experimental Investigation into LWIR Transmission Performance of Complementary Silicon Subwavelength Antireflection Grating (SWARG) Structures
Cetin, Ramazan; Akın, Tayfun (Springer Science and Business Media LLC, 2019-03-18)
This paper presents a detailed comparison between the long wave infrared (LWIR) transmission performances of binary, silicon based, structurally complementary pillar and groove type antireflective gratings that can be used for wafer level vacuum packaging (WLVP) of uncooled microbolometer detectors. Both pillar and groove type gratings are designed with various topological configurations changing in various period sizes (Delta) from 1.0 mu m to 2.0 mu m, various heights/depths (h) from 0.8 mu m to 1.8 mu m,...
Novel topological nodal lines and exotic drum-head-like surface states in synthesized CsCl-type binary alloy TiOs
Wang, Xiaotian; Ding, Guangqian; Cheng, Zhenxiang; Surucu, Gokhan; Wang, Xiao-Lin; Yang, Tie (Elsevier BV, 2020-03-01)
Very recently, searching for new topological nodal line semimetals (TNLSs) and drum-head-like (DHL) surface states has become a hot topic in the field of physical chemistry of materials. Via first principles, in this study, a synthesized CsCl type binary alloy, TiOs, was predicted to be a TNLS with three topological nodal lines (TNLs) centered at the X point in the k(x/y/z) = pi plane, and these TNLs, which are protected by mirror, time reversal (T) and spatial inversion (P) symmetries, are perpendicular to...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Ilgaç, G. Can, and K. Ö. Çetin, “A dataset on void ratio limits and their range for cohesionless soils,”
DATA IN BRIEF
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36024.