Automatic target recognition and detection in infrared imagery under cluttered background

Alatan, Abdullah Aydın
Visual object classification has long been studied in visible spectrum by utilizing conventional cameras. Since the labeled images has recently increased in number, it is possible to train deep Convolutional Neural Networks (CNN) with significant amount of parameters. As the infrared (IR) sensor technology has been improved during the last two decades, labeled images extracted from IR sensors have been started to be used for object detection and recognition tasks. We address the problem of infrared object recognition and detection by exploiting 15K images from the real-field with long-wave and mid-wave IR sensors. For feature learning, a stacked denoising autoencoder is trained in this IR dataset. To recognize the objects, the trained stacked denoising autoencoder is fine-tuned according to the binary classification loss of the target object. Once the training is completed, the test samples are propagated over the network, and the probability of the test sample belonging to a class is computed. Moreover, the trained classifier is utilized in a detect-by-classification method, where the classification is performed in a set of candidate object boxes and the maximum confidence score in a particular location is accepted as the score of the detected object. To decrease the computational complexity, the detection step at every frame is avoided by running an efficient correlation filter based tracker. The detection part is performed when the tracker confidence is below a pre-defined threshold. The experiments conducted on the real field images demonstrate that the proposed detection and tracking framework presents satisfactory results for detecting tanks under cluttered background.


A multimodal approach for individual tracking of people and their belongings
Beyan, Çiğdem; Temizel, Alptekin (2015-04-01)
In this study, a fully automatic surveillance system for indoor environments which is capable of tracking multiple objects using both visible and thermal band images is proposed. These two modalities are fused to track people and the objects they carry separately using their heat signatures and the owners of the belongings are determined. Fusion of complementary information from different modalities (for example, thermal images are not affected by shadows and there is no thermal reflection or halo effect in...
New method for the fusion of complementary information from infrared and visual images for object detection
Ulusoy, İlkay (Institution of Engineering and Technology (IET), 2011-02-01)
Visual and infrared cameras have complementary properties and using them together may increase the performance of object detection applications. Although the fusion of visual and infrared information results in a better recall rate than using only one of those domains, there is always a decrease in the precision rate whereas the infrared domain on its own always has higher precision. Thus, the fusion of these domains is meaningful only for a better recall rate, which means that more foreground pixels are de...
Does estimated depth help object detection?
Çetinkaya, Bedrettin; Akbaş, Emre; Department of Computer Engineering (2019)
With the widespread use of RGB-D cameras, depth information has improved solutions of many computer vision problems including object detection. Object detection can exploit depth information and different encodings obtained from the depth map. Although previous works proved that depth information can be used to improve object detection results, this thesis investigates the effects of depth map to object detection from different aspects in detailed experiments. To clarify these effects, we examine the follow...
Moving hot object detection in airborne thermal videos
Kaba, Utku; Akar, Gözde; Department of Electrical and Electronics Engineering (2012)
In this thesis, we present an algorithm for vision based detection of moving objects observed by IR sensors on a moving platform. In addition we analyze the performance of different approaches in each step of the algorithm. The proposed algorithm is composed of preprocessing, feature detection, feature matching, homography estimation and difference image analysis steps. First, a global motion estimation based on planar homography model is performed in order to compensate the motion of the sensor and moving ...
High performance focal plane array technologies from short to long wavelength infrared bands
Arslan, Yetkin; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2014)
This thesis work covers the development of three different state of the art infrared sensor technologies: quantum well infrared photodetectors (QWIPs), HgCdTe sensors and extended InGaAs photodetectors. QWIP is the leading member of the quantum structure infrared photodetector family providing excellent uniformity and stability with field proven performance. The utilization of the InP/In0.48Ga0.52As multi-quantum well structure (instead of the standard AlGaAs/GaAs material system) for the implementation of ...
Citation Formats
E. GÜNDOĞDU, A. KOÇ, and A. A. Alatan, “Automatic target recognition and detection in infrared imagery under cluttered background,” 2017, Accessed: 00, 2020. [Online]. Available: