3D object recognition from range images

İzciler, Fatih
Recognizing generic objects by single or multi view range images is a contemporary popular problem in 3D object recognition area with developing technology of scanning devices such as laser range scanners. This problem is vital to current and future vision systems performing shape based matching and classification of the objects in an arbitrary scene. Despite improvements on scanners, there are still imperfections on range scans such as holes or unconnected parts on images. This studyobjects at proposing and comparing algorithms that match a range image to complete 3D models in a target database.The study started with a baseline algorithm which usesstatistical representation of 3D shapesbased on 4D geometricfeatures, namely SURFLET-Pair relations.The feature describes the geometrical relationof a surface-point pair and reflects local and the global characteristics of the object. With the desire of generating solution to the problem,another algorithmthat interpretsSURFLET-Pairslike in the baseline algorithm, in which histograms of the features are used,isconsidered. Moreover, two other methods are proposed by applying 2D space filing curves on range images and applying 4D space filling curves on histograms of SURFLET-Pairs. Wavelet transforms are used for filtering purposes in these algorithms. These methods are tried to be compact, robust, independent on a global coordinate frame and descriptive enough to be distinguish queries’ categories.Baseline and proposed algorithms are implemented on a database in which range scans of real objects with imperfections are queries while generic 3D objects from various different categories are target dataset.


Geospatial Object Recognition From High Resolution Satellite Imagery
Ergul, Mustafa; Alatan, Abdullah Aydın (2013-01-01)
In this paper, a novel automatic geo-spatial object recognition algorithm from high resolution satellite imagery is proposed. The proposed algorithm consists of two main steps; the generation of hypothesis with a local feature based algorithm and verification step with a shape based approach. The superiority of this method is the ability of minimization of false alarm number in the recognition and this is because object shape includes more characteristic and discriminative information about object identity ...
KIRAGI, H; Ersak, Aydın (1994-04-14)
In this paper an object recognition and localization system based on ultrasonic range imaging to be used in optically opaque environments is introduced. The system is especially designed for robotics applications. The ultrasonic image is acquired by scanning ultrasonic transducers in two dimensions above the area where objects are located. The features that are used for recognition and localization processes are extracted from the outermost boundaries of the objects present in the input scene. Experimental ...
Visual object detection and tracking using local convolutional context features and recurrent neural networks
Kaya, Emre Can; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2018)
Visual object detection and tracking are two major problems in computer vision which have important real-life application areas. During the last decade, Convolutional Neural Networks (CNNs) have received significant attention and outperformed methods that rely on handcrafted representations in both detection and tracking. On the other hand, Recurrent Neural Networks (RNNs) are commonly preferred for modeling sequential data such as video sequences. A novel convolutional context feature extension is introduc...
Camera electronics and image enhancement software for infrared detector arrays
Küçükkömürler, Alper; Akın, Tayfun; Department of Environmental Engineering (2012)
This thesis aims to design and develop camera electronics and image enhancement software for infrared detector arrays. It first discusses the camera electronics suitable for infrared detector arrays, then it concentrates on image enhancement software that are implemented including defective pixel correction, contrast enhancement, noise reduction and pseudo coloring. After that, testing and results of the implemented algorithms were presented. Camera electronics and circuit operation frequency are selected c...
Range data recognition: segmentation, matching, and similarity retrieval
Yalçın Bayramoğlu, Neslihan; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2011)
The improvements in 3D scanning technologies have led the necessity for managing range image databases. Hence, the requirement of describing and indexing this type of data arises. Up to now, rather much work is achieved on capturing, transmission and visualization; however, there is still a gap in the 3D semantic analysis between the requirements of the applications and the obtained results. In this thesis we studied 3D semantic analysis of range data. Under this broad title we address segmentation of range...
Citation Formats
F. İzciler, “3D object recognition from range images,” M.S. - Master of Science, Middle East Technical University, 2012.