Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fast and accurate solutions of large-scale scattering problems with parallel multilevel fast multipole algorithm
Download
index.pdf
Date
2007-06-15
Author
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
163
views
0
downloads
Cite This
Fast and accurate solution of large-scale scattering problems obtained by integral-equation formulations for conducting surfaces is considered in this paper. By employing a parallel implementation of the multilevel fast multipole algorithm (MLFMA) on relatively inexpensive platforms. Specifically, the solution of a scattering problem with 33,791,232 unknowns, which is even larger than the 20-million unknown problem reported recently. Indeed, this 33-million-unknown problem is the largest integral-equation problem solved in computational electromagnetics.
Subject Keywords
Large-scale systems
,
MLFMA
,
Tree data structures
,
Electromagnetic scattering
,
Testing
,
Transmission line matrix methods
,
Interpolation
,
Computational electromagnetics
,
Electromagnetic radiation
,
Geometry
URI
https://hdl.handle.net/11511/36124
DOI
https://doi.org/10.1109/aps.2007.4396276
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Fast and accurate solutions of extremely large scattering problems involving three-dimensional canonical and complicated objects
Ergül, Özgür Salih (2009-07-23)
We present fast and accurate solutions of extremely large scattering problems involving three-dimensional metallic objects discretized with hundreds of millions of unknowns. Solutions are performed by the multilevel fast multipole algorithm, which is parallelized efficiently via a hierarchical partition strategy. Various examples involving canonical and complicated objects are presented in order to demonstrate the feasibility of accurately solving large-scale problems on relatively inexpensive computing pla...
Fast and accurate solutions of scattering problems involving dielectric objects with moderate and low contrasts
Ergül, Özgür Salih (2007-08-31)
We consider the solution of electromagnetic scattering problems involving relatively large dielectric objects with moderate and low contrasts. Three-dimensional objects are discretized with Rao-Wilton-Glisson functions and the scattering problems are formulated with surface integral equations. The resulting dense matrix equations are solved iteratively by employing the multilevel fast multipole algorithm. We compare the accuracy and efficiency of the results obtained by employing various integral equations ...
Efficient solution of the combined-field integral equation with the parallel multilevel fast multipole algorithm
Gürel, Levent; Ergül, Özgür Salih (2007-08-31)
We present fast and accurate solutions of large-scale scattering problems formulated with the combined-field integral equation. Using the multilevel fast multipole algorithm (MLFMA) parallelized on a cluster of computers, we easily solve scattering problems that are discretized with tens of millions of unknowns. For the efficient parallelization of MLFMA, we propose a hierarchical partitioning scheme based on distributing the multilevel tree among the processors with an improved load-balancing. The accuracy...
Hybrid CFIE-EFIE solution of composite geometries with coexisting open and closed surfaces
Ergül, Özgür Salih (2005-07-08)
The combined-field integral equation (CFIE) is employed to formulate the electromagnetic scattering and radiation problems of composite geometries with coexisting open and closed conducting surfaces. Conventional formulations of these problems with the electric-field integral equation (EFIE) lead to inefficient solutions due to the ill-conditioning of the matrix equations and the internal-resonance problems. The hybrid CFIE-EFIE technique introduced in this paper, based on the application of the CRE on the ...
Investigation of rough surface scattering of electromagnetic waves using finite element method
Aşırım, Özüm Emre; Kuzuoğlu, Mustafa; Özgün, Özlem; Department of Electrical and Electronics Engineering (2013)
This thesis analyzes the problem of electromagnetic wave scattering from rough surfaces using finite element method. Concepts like mesh generation and random rough surface generation will be discussed firstly. Then the fundamental concepts of the finite element method which are the functional form of a given partial differential equation, implementation of the element coefficient matrices, and the assemblage of elements will be discussed in detail. The rough surface and the overall mesh geometry will be imp...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. S. Ergül, “Fast and accurate solutions of large-scale scattering problems with parallel multilevel fast multipole algorithm,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36124.