Hybrid CFIE-EFIE solution of composite geometries with coexisting open and closed surfaces

Download
2005-07-08
The combined-field integral equation (CFIE) is employed to formulate the electromagnetic scattering and radiation problems of composite geometries with coexisting open and closed conducting surfaces. Conventional formulations of these problems with the electric-field integral equation (EFIE) lead to inefficient solutions due to the ill-conditioning of the matrix equations and the internal-resonance problems. The hybrid CFIE-EFIE technique introduced in this paper, based on the application of the CRE on the closed surfaces and EFIE on the open surfaces, significantly improves the efficiency of the solution.

Suggestions

Combined-field solution of composite geometries involving open and closed conducting surfaces
Ergül, Özgür Salih (2005-04-07)
Combined-field integral equation (CFIE) is modified and generalized to formulate the electromagnetic problems of composite geometries involving both open and closed conducting surfaces. These problems are customarily formulated with the electric-field integral equation (EFIE) due to the presence of the open surfaces. With the new definition and application of the CFIE, iterative solutions of these problems are now achieved with significantly improved efficiency compared to the EFIE solution, without sacrifi...
Improving the accuracy of the surface integral equations for low-contrast dielectric scatterers
Ergül, Özgür Salih (2007-06-15)
Solutions of scattering problems involving low-contrast dielectric objects are considered by employing surface integral equations. A stabilization procedure based on extracting the non-radiating part of the induced currents is applied so that the remaining radiating currents can be modelled appropriately and the scattered fields from the low-contrast objects can be calculated with improved accuracy. Stabilization is applied to both tangential (T) and normal (N) formulations in order to use the benefits of d...
Improving the accuracy of the MFIE with the choice of basis functions
Ergül, Özgür Salih (2004-06-26)
In the method-of-moments (MOM) and the fast-multipole-method (FMM) solutions of the electromagnetic scattering problems modeled by arbitrary planar triangulations, the magnetic-field integral equation (MFIE) can be observed to give less accurate results compared to the electric-field integral equation (EFIE), if the current is expanded with the Rao-Wilton-Glisson (RWG) basis functions. The inaccuracy is more evident for problem geometries with sharp edges or tips. This paper shows that the accuracy of the M...
Fast and accurate solutions of scattering problems involving dielectric objects with moderate and low contrasts
Ergül, Özgür Salih (2007-08-31)
We consider the solution of electromagnetic scattering problems involving relatively large dielectric objects with moderate and low contrasts. Three-dimensional objects are discretized with Rao-Wilton-Glisson functions and the scattering problems are formulated with surface integral equations. The resulting dense matrix equations are solved iteratively by employing the multilevel fast multipole algorithm. We compare the accuracy and efficiency of the results obtained by employing various integral equations ...
On the errors arising in surface integral equations due to the discretization of the identity operatort
Ergül, Özgür Salih (2009-06-05)
Surface integral equations (SIEs) are commonly used to formulate scattering and radiation problems involving three-dimensional metallic and homogeneous dielectric objects with arbitrary shapes. For numerical solutions, equivalent electric and/or magnetic currents defined on surfaces are discretized and expanded in a series of basis functions. Then, the boundary conditions are tested on surfaces via a set of testing functions. Solutions of the resulting dense matrix equations provide the expansion coefficien...
Citation Formats
Ö. S. Ergül, “Hybrid CFIE-EFIE solution of composite geometries with coexisting open and closed surfaces,” 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38961.