Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Indentation of a cantilever beam or plate
Date
1995-12-01
Author
Kadıoğlu, Fevzi Suat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
177
views
0
downloads
Cite This
In this paper the general plane problem for a semi-infinite strip fixed at its short end, containing a crack perpendicular to its voundaries is considered. The strip is under the effect of a stamp. By extending the crack to the surfaces, one can reduce the problem to that of c cantilever beam or plate. Integral transform technique is used to provide an exact formulation of this problem, in terms of a system of four singular integral equations one of them being second kind. Stress singularities at the corners of the fixed-end, at the crack tips and at the end points of the contact region undermeath the stamp are obtained from the singular integral equations which are then solved numerically.
Subject Keywords
Modelling and Simulation
,
Mechanics of Materials
,
Computational Mechanics
URI
https://hdl.handle.net/11511/36143
Journal
International Journal of Fracture
DOI
https://doi.org/10.1007/bf00036261
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Axisymmetric crack terminating at the interface of transversely isotropic dissimilar media
Kadıoğlu, Fevzi Suat (Springer Science and Business Media LLC, 2002-07-01)
In this paper, the axisymmetric elasticity problem of an infinitely long transversely isotropic solid cylinder imbedded in a transversely isotropic medium is considered. The cylinder contains an annular or a penny shaped crack subjected to uniform pressure on its surfaces. It is assumed that the cylinder is perfectly bonded to the medium. A singular integral equation of the first kind (whose unknown is the derivative of crack surface displacement) is derived by using Fourier and Hankel transforms. By perfor...
Periodic crack problem for a functionally graded half-plane an analytic solution
YILDIRIM, BORA; Kutlu, Ozge; Kadıoğlu, Fevzi Suat (Elsevier BV, 2011-10-15)
The plane elasticity problem of a functionally graded semi-infinite plane, containing periodic imbedded or edge cracks perpendicular to the free surface is considered. Cracks are subjected to mode one mechanical or thermal loadings, which are represented by crack surface tractions. Young's modulus, conduction coefficient, coefficient of thermal expansion are taken as exponentially varying functions of the depth coordinate where as Poisson ratio and thermal diffusivity are assumed to be constant. Fourier int...
The stress intensity factors for an infinitely long transversely isotropic, thick-walled cylinder which contains a ring-shaped crack
Altinel, T; Fildis, H; Yahsi, OS (Springer Science and Business Media LLC, 1996-01-01)
In this study the elastostatic axisymmetric problem for a long thick-walled transversely anisotropic cylinder containing a ring-shaped internal crack is analyzed. The problem is reduced to a singular integral equation which has a simple Cauchy kernel as the dominant part by using Hankel and Fourier transform techniques. These equations are then solved numerically and the stress intensity factors are calculated.
Crack propagation in a commercial steel
Bilir , Oğuz Gürkan (Springer Science and Business Media LLC, 1988-5)
In this work, the fatigue crack propagation behaviour of commercial steel sheet specimens containing a circular hole, under uniaxial loading conditions at room temperature was investigated. The experimental data have been analysed in terms of variability of material constants. The results were presented in the form of power relationship between the crack growth rate and the stress intensity factor range.
Three dimensional fracture analysis of FGM coatings under thermomechanical loading
Yildirim, B; Dağ, Serkan; Erdogan, E (Springer Science and Business Media LLC, 2005-04-01)
The main objective of this study is to examine the three dimensional surface crack problems in functionally graded coatings subjected to mode I mechanical or transient thermal loading. The surface cracks are assumed to have a semi-elliptical crack front profile of arbitrary aspect ratio. The cracks are embedded in the functionally graded material (FGM) coating which is perfectly bonded to a homogeneous substrate. A three dimensional finite element method is used to solve the thermal and structural problems....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. S. Kadıoğlu, “Indentation of a cantilever beam or plate,”
International Journal of Fracture
, pp. 99–130, 1995, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36143.