Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Magnetic Resonance - Electrical Impedance Tomography (MR-EIT) Research at METU
Date
2006-09-01
Author
Eyüboğlu, Behçet Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
281
views
0
downloads
Cite This
Following development of magnetic resonance current density imaging (MRCDI), magnetic resonance - electrical impedance tomography (MR-EIT) has emerged as a promising approach to produce high resolution conductivity images. Electric current applied to a conductor results in a potential field and a magnetic flux density distribution. Using a magnetic resonance imaging (MRI) system, the magnetic flux density distribution can be reconstructed as in MRCDI. The flux density is related to the current density distribution hence the relative conductivity distribution. The sensitivity of the MR-EIT measurements to conductivity distribution and the spatial resolution in the field of view are independent of position. The spatial resolution is in the order of a few millimeters which make MR-EIT an attractive modality to image tissue conductivity. In this talk, several MR-EIT reconstruction algorithms developed and implemented at Middle East Technical University (METU), their performance analysis on simulated data and the results of experiments performed on 0.15 Tesla METU-MRI system are given.
Subject Keywords
Current density
,
Electrical impedance
,
Magnetic resonance
,
Imaging
,
Tomography
URI
https://hdl.handle.net/11511/53389
Conference Name
World Congress on Medical Physics and Biomedical Engineering
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Equipotential projection based magnetic resonance electrical impedance tomography (mr-eit) for high resolution conductivity imaging
Özdemir, Mahir Sinan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2003)
In this study, a direct reconstruction algorithm for Magnetic Resonance Electrical Impedance Tomography (MR-EIT) is proposed and experimentally implemented for high resolution true conductivity imaging. In MR-EIT, elec trical impedance tomography (EIT) and magnetic resonance imaging (MRI) are combined together. Current density measurements are obtained making use of Magnetic Resonance Current Density Imaging (MR-CDI) techniques and peripheral potential measurements are determined using conventional EIT tech...
Magnetic Resonance Electrical Impedance Tomography For Anisotropic Conductivity Imaging
Degirmenci, E.; Eyüboğlu, Behçet Murat (2008-11-27)
Magnetic Resonance Electrical Impedance Tomography (MREIT) brings high resolution imaging of true conductivity distribution to reality. MREIT images are reconstructed based on measurements of current density distribution and a surface potential value, induced by an externally applied current flow. Since biological tissues may be anisotropic, isotropic conductivity assumption, as it is adopted in most of MREIT reconstruction algorithms, introduces reconstruction inaccuracy. In this study, a novel algorithm i...
Magnetic resonance current density imaging using one component of magnetic flux density
Ersoz, Ali; Eyüboğlu, Behçet Murat (2013-03-01)
Current density distribution generated inside a volume conductor by externally applied currents can be calculated by using spatial distribution of its magnetic flux density, . The imaging modality used to reconstruct images of the current density distribution is known as magnetic resonance current density imaging (MRCDI). In MRCDI, spatial distribution of the current-induced magnetic flux density is measured on a magnetic resonance imaging (MRI) platform. Calculation of current density distribution from mag...
New technique for high resolution absolute conductivity imaging using magnetic resonance-electrical impedance tomography (MR-EIT)
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (2001-02-22)
A novel MR-EIT imaging modality has been developed to reconstruct high-resolution conductivity images with true conductivity value. In this new technique, electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques are simultaneously used. Peripheral voltages are measured using EIT and magnetic flux density measurements are determined using MRI. The image reconstruction algorithm used is an iterative one, based on minimizing the difference between two current density distributions ...
Analysis of reconstruction performance of magnetic resonance conductivity tensor imaging (MRCTI) using simulated measurements
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2017-01-01)
Magnetic resonance conductivity tensor imaging (MRCTI) was proposed recently to produce electrical conductivity images of anisotropic tissues. Similar to magnetic resonance electrical impedance tomography (MREIT), MRCTI uses magnetic field and boundary potential measurements obtained utilizing magnetic resonance imaging techniques. MRCTI reconstructs tensor images of anisotropic conductivity whereas MREIT reconstructs isotropic conductivity images. In this study, spatial resolution and linearity of five rec...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. M. Eyüboğlu, “Magnetic Resonance - Electrical Impedance Tomography (MR-EIT) Research at METU,” Seoul, SOUTH KOREA, 2006, vol. 14, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53389.