Magnetic Resonance Electrical Impedance Tomography For Anisotropic Conductivity Imaging

Magnetic Resonance Electrical Impedance Tomography (MREIT) brings high resolution imaging of true conductivity distribution to reality. MREIT images are reconstructed based on measurements of current density distribution and a surface potential value, induced by an externally applied current flow. Since biological tissues may be anisotropic, isotropic conductivity assumption, as it is adopted in most of MREIT reconstruction algorithms, introduces reconstruction inaccuracy. In this study, a novel algorithm is proposed to reconstruct MREIT images of anisotropic conductivity. Relative values of anisotropic conductivity are reconstructed iteratively, using only measurement of current density distribution. By measuring a surface potential or a conductivity value, true values of anisotropic conductivity can be recovered. The technique is evaluated based on simulated measurements with and without additive noise. The results show that anisotropic and isotropic conductivity distributions can be reconstructed, successfully.
4th European Conference of the International Federation for Medical and Biological Engineering (ECIFMBE)


Magnetic Resonance - Electrical Impedance Tomography (MR-EIT) Research at METU
Eyüboğlu, Behçet Murat (2006-09-01)
Following development of magnetic resonance current density imaging (MRCDI), magnetic resonance - electrical impedance tomography (MR-EIT) has emerged as a promising approach to produce high resolution conductivity images. Electric current applied to a conductor results in a potential field and a magnetic flux density distribution. Using a magnetic resonance imaging (MRI) system, the magnetic flux density distribution can be reconstructed as in MRCDI. The flux density is related to the current density distr...
Anisotropic Conductivity Imaging with MREIT Using J-substitution and Hybrid J-substitution Algorithms
Degirmenci, E.; Eyüboğlu, Behçet Murat (2009-09-12)
Magnetic Resonance Electrical Impedance Tomography (MREIT) is a tomographical imaging technique which uses measurements of magnetic flux density induced by a probing current to reconstruct electrical conductivity distribution within a conductor object with magnetic resonance active nuclei. In this study, two novel anisotropic conductivity reconstruction algorithms for MREIT are proposed. The technique is evaluated with simulated measurements.
Analysis of reconstruction performance of magnetic resonance conductivity tensor imaging (MRCTI) using simulated measurements
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2017-01-01)
Magnetic resonance conductivity tensor imaging (MRCTI) was proposed recently to produce electrical conductivity images of anisotropic tissues. Similar to magnetic resonance electrical impedance tomography (MREIT), MRCTI uses magnetic field and boundary potential measurements obtained utilizing magnetic resonance imaging techniques. MRCTI reconstructs tensor images of anisotropic conductivity whereas MREIT reconstructs isotropic conductivity images. In this study, spatial resolution and linearity of five rec...
Anisotropic conductivity imaging with MREIT using equipotential projection algorithm
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2007-09-02)
Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging technique which combines boundary potential measurements of electrical impedance tomography (EIT) and internal current density distribution obtained from magnetic resonance imaging (MRI) to produce conductivity images having high spatial resolution and accuracy. In this study, a novel method of reconstructing images of anisotropic conductivity tensor distribution inside an electrically conducting subject is proposed for MREI...
Magnetic resonance current density imaging using one component of magnetic flux density
Ersoz, Ali; Eyüboğlu, Behçet Murat (2013-03-01)
Current density distribution generated inside a volume conductor by externally applied currents can be calculated by using spatial distribution of its magnetic flux density, . The imaging modality used to reconstruct images of the current density distribution is known as magnetic resonance current density imaging (MRCDI). In MRCDI, spatial distribution of the current-induced magnetic flux density is measured on a magnetic resonance imaging (MRI) platform. Calculation of current density distribution from mag...
Citation Formats
E. Degirmenci and B. M. Eyüboğlu, “Magnetic Resonance Electrical Impedance Tomography For Anisotropic Conductivity Imaging,” Antwerp, BELGIUM, 2008, vol. 22, Accessed: 00, 2020. [Online]. Available: