Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Physical–chemical hybrid transiency: A fully transient li-ion battery based on insoluble active materials
Date
2016-10-15
Author
CHEN, Yuanfen
JAMSHIDI, Reihaneh
WHITE, Kathryn
Çınar, Simge
GALLEGOS, Emma
HASHEMI, Nastaran
Montazami, Reza
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
216
views
0
downloads
Cite This
Transient Li-ion batteries based on polymeric constituents are presented, exhibiting a twofold increase in the potential and approximately three orders of magnitude faster transiency rate compared to other transient systems reported in the literature. The battery takes advantage of a close variation of the active materials used in conventional Li-ion batteries and can achieve and maintain a potential of >2.5 V. All materials are deposited form polymer-based emulsions and the transiency is achieved through a hybrid approach of redispersion of insoluble, and dissolution of soluble components in approximately 30 min. The presented proof of concept has paramount potentials in military and hardware security applications.
Subject Keywords
Transient electronics
,
ransient batteries
,
Swelling
,
Physical-chemical transiency
,
Li-ion battery
,
Hybrid transiency
,
Colloids
,
Degradation
URI
https://hdl.handle.net/11511/36407
Journal
Journal of Polymer Science, Part B: Polymer Physics
DOI
https://doi.org/10.1002/polb.24113
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Ultra-fast charge exchange spectroscopy for turbulent ion temperature fluctuation measurements on the DIII-D tokamak (invited)
Uzun Kaymak, İlker Ümit; McKee, G. R. (2012-10-01)
A novel two-channel, high throughput, high efficiency spectrometer system has been developed to measure impurity ion temperature and toroidal velocity fluctuations associated with long-wavelength turbulence and other plasma instabilities. The spectrometer observes the emission of the n = 8-7 hydrogenic transition of C+5 ions (lambda(air) = 529.06 nm) resulting from charge exchange reactions between deuterium heating beams and intrinsic carbon. Novel features include a large, prism-coupled high-dispersion, v...
Energy Conversion Efficiency of Single-Phase Transformerless PV Inverters
Özkan, Ziya; Hava, Ahmet Masum (2013-11-30)
In grid-connected photovoltaic (PV) applications, power semiconductor energy conversion efficiency of PV inverters is one of the major figures of merits to evaluate and compare these systems as the payback ratio of the overall system is tightly related to the energy conversion efficiency and as semiconductor losses comprise the majority of energy losses. In order to wisely choose the PV inverter topology and associated semiconductors, analytic evaluation of semiconductor losses of topologies is required. Fu...
Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium-sulfur batteries: an experimental and molecular modeling study
Zhu, Jiadeng; Yıldırım, Erol; Aly, Karim; Shen, Jialong; Chen, Chen; Lu, Yao; Jiang, Mengjin; Kim, David; Tonelli, Alan E.; Pasquinelli, Melissa A.; Bradford, Philip D.; Zhang, Xiangwu (2016-01-01)
Sulfur (S) has been considered as a promising cathode candidate for lithium batteries due to its high theoretical specific capacity and energy density. However, the low active material utilization, severe capacity fading, and short lifespan of the resultant lithium-sulfur (Li-S) batteries have greatly hindered their practicality. In this work, a multi-functional polyacrylonitrile/silica nanofiber membrane with an integral ultralight and thin multi-walled carbon nanotube sheet is presented and it provides a ...
Thermally stimulated currents in layered Ga4SeS3 semiconductor
Aytekin, S; Yuksek, NS; Goktepe, M; Hasanlı, Nızamı; Aydinli, A (Wiley, 2004-10-01)
Thermally stimulated current (TSC) measurements are carried out on nominally undoped Ga4SeS3 layered semiconductor samples with the cur-rent flowing along the c-axis in the temperature range of 10 to 150 K. The results are analyzed according to various methods, such as curve fitting, initial rise and Chen's methods, which seem to be in good agreement with each other. Experimental evidence is found for the presence of three trapping centers in Ga4SeS3 with activation energies of 70, 210 and 357 meV. The calc...
Equivalent Circuit Models for Split-ring Resonator Arrays
Yasar-Orten, P.; Ekmekci, E.; Sayan, Gönül (2010-07-08)
In this study, a square-shaped single-ring SRR unit cell is modeled by using a suitable two-port resonant circuit representation that accounts for the conductor loss and dielectric loss effects as well. Capacitive and inductive coupling effects between adjacent SRR unit cells are also described by the two-port equivalent circuit approach. Finally, the resonance frequency of an infinitely long SRR array is estimated using its equivalent circuit model and compared to the value of the resonance frequency obtai...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. CHEN et al., “Physical–chemical hybrid transiency: A fully transient li-ion battery based on insoluble active materials,”
Journal of Polymer Science, Part B: Polymer Physics
, pp. 2021–2027, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36407.