Spatiotemporal patterns in a dc semiconductor-gas-discharge system: Stability analysis and full numerical solutions

Download
2007-09-01
Rafatov, İsmail
EBERT, Ute
A system very similar to a dielectric barrier discharge, but with a simple stationary dc voltage, can be realized by sandwiching a gas discharge and a high-ohmic semiconductor layer between two planar electrodes. In experiments this system forms spatiotemporal and temporal patterns spontaneously, quite similarly to, e.g., Rayleigh-Benard convection. Here it is modeled with a simple discharge model with space charge effects, and the semiconductor is approximated as a linear conductor. In previous work, this model has reproduced the phase transition from homogeneous stationary to homogeneous oscillating states semiquantitatively. In the present work, the formation of spatial patterns is investigated through linear stability analysis and through numerical simulations of the initial value problem; the methods agree well. They show the onset of spatiotemporal patterns for high semiconductor resistance. The parameter dependence of temporal or spatiotemporal pattern formation is discussed in detail.
PHYSICAL REVIEW E

Suggestions

Oscillations in dc driven barrier discharges: Numerical solutions, stability analysis, and phase diagram
SIJACIC, DD; EBERT, U; Rafatov, İsmail (American Physical Society (APS), 2005-06-01)
A short gas-discharge layer sandwiched with a semiconductor layer between planar electrodes shows a variety of spatiotemporal patterns. We focus on the spontaneous temporal oscillations that occur while a dc voltage is applied and while the system stays spatially homogeneous; the results for these oscillations apply equally to a planar discharge in series with any resistor with capacitance. We define the minimal model, identify its independent dimensionless parameters, and then present the results of the fu...
Period doubling cascade in glow discharges: Local versus global differential conductivity
SIJACIC, DD; EBERT, U; Rafatov, İsmail (American Physical Society (APS), 2004-11-01)
Short planar glow discharges coupled to a resistive layer exhibit a wealth of spontaneous spatiotemporal patterns. Due to similarities with other pattern forming systems that are described by reaction-diffusion models, several authors have tried to derive such models from discharge physics. We investigate the temporal oscillations of the discharge system and find a cascade of period doubling events. This shows that the inner structure of the discharge is more complex than can be described by a two-component...
Multi-band polarization independent cylindrical metamaterial absorber and sensor application
Dincer, Furkan; KARAASLAN, MUHARREM; Colak, Sule; TETİK, ERKAN; AKGÖL, OĞUZHAN; ALTINTAŞ, OLCAY; Sabah, Cumali (World Scientific Pub Co Pte Lt, 2016-03-30)
A multi-band perfect metamaterial absorber (MA) based on a cylindrical waveguide with polarization independency is numerically presented and investigated in detail. The proposed absorber has a very simple configuration, and it operates at flexible frequency ranges within the microwave frequency regime by simply tuning the dimensions of the structure. The maximum absorption values are obtained as 99.9%, 97.5%, 85.8%, 68.2% and 40.2% at the frequencies of 1.34 GHz, 2.15 GHz, 3.2 GHz, 4.31 GHz and 5.41 GHz, re...
JOINT ENTROPY OF THE HARMONIC OSCILLATOR WITH TIME-DEPENDENT MASS AND/OR FREQUENCY
Akturk, Ethem; ÖZCAN, ÖZGÜR; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2009-04-30)
Time-dependent joint entropy is obtained for harmonic oscillator with the time-dependent mass and frequency case. It is calculated by using time-dependent wave function obtained via Feynman path integral method. Variation of time dependence is investigated for various cases.
Optoelectronic properties of Tl3InSe4 single crystals
QASRAWI, ATEF FAYEZ HASAN; Hasanlı, Nızamı (Informa UK Limited, 2010-01-01)
The crystal structure, temperature-dependent electrical conductivity, Hall coefficient, current-voltage characteristics, absorption spectra and temperature- and illumination-dependent photoconductivity of Tl3InSe4 single crystals were investigated. Tl3InSe4 crystallises in a body-centred lattice with tetragonal symmetry and belongs to the space group [image omitted]. The crystals are extrinsic p-type semiconductors and exhibit a conductivity conversion from p- to n-type at a critical temperature, Tc, of 283...
Citation Formats
İ. Rafatov and U. EBERT, “Spatiotemporal patterns in a dc semiconductor-gas-discharge system: Stability analysis and full numerical solutions,” PHYSICAL REVIEW E, pp. 0–0, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36447.