Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multi-band polarization independent cylindrical metamaterial absorber and sensor application
Date
2016-03-30
Author
Dincer, Furkan
KARAASLAN, MUHARREM
Colak, Sule
TETİK, ERKAN
AKGÖL, OĞUZHAN
ALTINTAŞ, OLCAY
Sabah, Cumali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
A multi-band perfect metamaterial absorber (MA) based on a cylindrical waveguide with polarization independency is numerically presented and investigated in detail. The proposed absorber has a very simple configuration, and it operates at flexible frequency ranges within the microwave frequency regime by simply tuning the dimensions of the structure. The maximum absorption values are obtained as 99.9%, 97.5%, 85.8%, 68.2% and 40.2% at the frequencies of 1.34 GHz, 2.15 GHz, 3.2 GHz, 4.31 GHz and 5.41 GHz, respectively. The numerical studies verify that the proposed model can provide multi-band perfect absorptions at wide polarization and incident angles due to its rotational symmetry feature. We have also realized sensor and parametric study applications in order to show additional features of the suggested model. The suggested MA enables myriad potential applications in medical technologies, sensors and in defense industry etc.
Subject Keywords
Statistical and Nonlinear Physics
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/68383
Journal
MODERN PHYSICS LETTERS B
DOI
https://doi.org/10.1142/s0217984916500950
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Oscillations in dc driven barrier discharges: Numerical solutions, stability analysis, and phase diagram
SIJACIC, DD; EBERT, U; Rafatov, İsmail (American Physical Society (APS), 2005-06-01)
A short gas-discharge layer sandwiched with a semiconductor layer between planar electrodes shows a variety of spatiotemporal patterns. We focus on the spontaneous temporal oscillations that occur while a dc voltage is applied and while the system stays spatially homogeneous; the results for these oscillations apply equally to a planar discharge in series with any resistor with capacitance. We define the minimal model, identify its independent dimensionless parameters, and then present the results of the fu...
Structural stability and electronic properties of different cross-sectional unstrained and rectangular cross-sectional strained GaP nanowires
Mohammad, Rezek; Katırcıoğlu, Şenay (World Scientific Pub Co Pte Lt, 2019-02-10)
The stability and electronic properties of the hexagonal, trigonal and rectangular cross-sectional GaP nanowires in wurtzite (WZ) phase are investigated using full potential linear augmented plane waves method. The rectangular cross-sectional nanowires are found more stable than the hexagonal and trigonal ones. The indirect bandgap structure of the nanowires is transformed into the direct bandgap one at a critical size connected to the geometry of the cross-section. The energy bandgap of the nanowires in th...
JOINT ENTROPY OF THE HARMONIC OSCILLATOR WITH TIME-DEPENDENT MASS AND/OR FREQUENCY
Akturk, Ethem; ÖZCAN, ÖZGÜR; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2009-04-30)
Time-dependent joint entropy is obtained for harmonic oscillator with the time-dependent mass and frequency case. It is calculated by using time-dependent wave function obtained via Feynman path integral method. Variation of time dependence is investigated for various cases.
Optoelectronic properties of Tl3InSe4 single crystals
QASRAWI, ATEF FAYEZ HASAN; Hasanlı, Nızamı (Informa UK Limited, 2010-01-01)
The crystal structure, temperature-dependent electrical conductivity, Hall coefficient, current-voltage characteristics, absorption spectra and temperature- and illumination-dependent photoconductivity of Tl3InSe4 single crystals were investigated. Tl3InSe4 crystallises in a body-centred lattice with tetragonal symmetry and belongs to the space group [image omitted]. The crystals are extrinsic p-type semiconductors and exhibit a conductivity conversion from p- to n-type at a critical temperature, Tc, of 283...
Spatiotemporal patterns in a dc semiconductor-gas-discharge system: Stability analysis and full numerical solutions
Rafatov, İsmail; EBERT, Ute (American Physical Society (APS), 2007-09-01)
A system very similar to a dielectric barrier discharge, but with a simple stationary dc voltage, can be realized by sandwiching a gas discharge and a high-ohmic semiconductor layer between two planar electrodes. In experiments this system forms spatiotemporal and temporal patterns spontaneously, quite similarly to, e.g., Rayleigh-Benard convection. Here it is modeled with a simple discharge model with space charge effects, and the semiconductor is approximated as a linear conductor. In previous work, this ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Dincer et al., “Multi-band polarization independent cylindrical metamaterial absorber and sensor application,”
MODERN PHYSICS LETTERS B
, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68383.