Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Characterization and kinetics of light crude oil combustion in the presence of metallic salts
Date
2004-05-01
Author
Kök, Mustafa Verşan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
233
views
0
downloads
Cite This
In this research, a reaction cell, thermogravimetry (TG), and differential thermal analysis (DTA) were used to characterize the light crude oil combustion and kinetics in the presence of copper(I) chloride (CuCl) and magnesium chloride (MgCl2·6H2O). In TG-DTA experiments with magnesium chloride, three reaction regions were identified, known as distillation, low-temperature oxidation (LTO), and high-temperature oxidation (HTO). In the case of copper(I) chloride, two main transitional stages are observed with distillation and high-temperature oxidation (HTO). It was also observed that, as the mol % of magnesium chloride increased, the high-temperature oxidation peak shifted to the lower-temperature region reflecting more homogeneous composition of the solid residue. In the case of reaction cell experiments, it was observed that the molar CO2/CO ratio values of fuel combustion increased with the addition of metallic salts. A decrease in the atomic H/C ratio with an increase in temperature was observed in all experiments performed.
Subject Keywords
Fuel Technology
,
Energy Engineering and Power Technology
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/36453
Journal
Energy and Fuels
DOI
https://doi.org/10.1021/ef0301755
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Characterization of medium and heavy crude oils using thermal analysis techniques
Kök, Mustafa Verşan (Elsevier BV, 2011-05-01)
This study focused on the characterization of heavy and medium grade crude oils in limestone matrix using differential scanning calorimeter (DSC) and thermogravimetry (TG-DTG). DSC and TG-DTG curves produced for two different crude oils + limestone mixtures indicate that the crude oil undergoes two major transitions when subjected to an oxidizing and constant rate environment known as low- and high-temperature oxidation. Kinetic analysis in the low- and high-temperature oxidation regions were performed usin...
SCANNING ELECTRON-MICROSCOPY OF TREATED BITUMINOUS COALS
HUAI, HY; GAINES, AF; FLINT, CD (Elsevier BV, 1992-11-01)
Scanning electron microscopy of particles of three bituminous coals (78.5% C, 81.7% C and 89.9% C d.a.f.) which had been treated with pyridine, methanol, bromine, air, sulfuric acid, ammonia and alkylating agents showed that the reagents produced significant changes in the morphology of the particles. The particles cracked and disintegrated in ways which appear to be characteristic of the disruption of hydrogen bonding, the volume and thermal changes accompanying local reactions and of the breakage of C-C b...
Characterization of lignocellulose biomass and model compounds by thermogravimetry
Kök, Mustafa Verşan (Informa UK Limited, 2017-01-01)
In this research, combustion characteristics of lignocellulose biomass (hazelnut shell) and three main components (cellulose, hemicellulose, and lignin) were investigated using thermogravimetry (TGA-DTG) technique at different heating rates. The ignition, peak, burn-out temperatures, and the heat liberation of lignocellulose biomass and three main components were also measured. Two different model-free kinetic methods, known as Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS), were used in order to...
Combustion characteristics of asphaltites
Kök, Mustafa Verşan; Ceylan, Ezgi; Ozkiliç, Oke (Informa UK Limited, 2005-04-01)
In this research, a laboratory work is performed to observe the combustion characteristics and reaction kinetic's of Silopi region asphaltites. A total of twelve experiments were performed with two different mesh sizes and under three different pressures. Product gas analyses were used to determine atomic H/C ratio, relative reaction rate, activation energy and Arrhenius constant for each asphaltite sample studied. The relative reaction rate vs. inverse temperature plots of Silopi asphaltite showed two main...
Determination of wettability and its effect on waterflood performance in limestone medium
Karabakal, U (American Chemical Society (ACS), 2004-03-01)
Wettability measurement methods, the effect of wettability on fluid distribution, and fluid flow in porous media were discussed, and the influence of rock wettability on the relative permeability and recovery of oil by waterflooding were investigated. Experimental studies were conducted on a total of 23 core plugs from two different limestone formations. Synthetic brine (NaCl solution) and mineral oil, which has a viscosity ratio of similar to10, were used as the test fluids. Core samples, saturated with sy...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. V. Kök, “Characterization and kinetics of light crude oil combustion in the presence of metallic salts,”
Energy and Fuels
, pp. 858–865, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36453.