Combustion characteristics of asphaltites

Kök, Mustafa Verşan
Ceylan, Ezgi
Ozkiliç, Oke
In this research, a laboratory work is performed to observe the combustion characteristics and reaction kinetic's of Silopi region asphaltites. A total of twelve experiments were performed with two different mesh sizes and under three different pressures. Product gas analyses were used to determine atomic H/C ratio, relative reaction rate, activation energy and Arrhenius constant for each asphaltite sample studied. The relative reaction rate vs. inverse temperature plots of Silopi asphaltite showed two main reactivity regions. One is occurring in the low temperature region and the other is in the high temperature region. In the low temperature region, an early production was observed where the volatiles within the asphaltite were released; remaining heavy hydrocarbons caused the formation of the second, high temperature region.
Energy Sources


Combustion kinetics of oil shales by reaction cell experiments
Kök, Mustafa Verşan; Bagci, S. (Estonian Academy Publishers, 2008-01-01)
In this study, kinetics parameters of combustion reaction of Seyitomer and Beypazari oil shales were determined using Weijdema's model of reaction kinetics. The analysis of reaction kinetics experiments showed two different reaction regions at combustion of Beypazari oil shale sample. Only one reaction region was observed at combustion of Seyitomer oil shale. CO2/CO ratios increased gradually at low and medium temperatures and stabilized at high temperatures, especially after complete combustion. A decrease...
Characterization and kinetics of light crude oil combustion in the presence of metallic salts
Kök, Mustafa Verşan (American Chemical Society (ACS), 2004-05-01)
In this research, a reaction cell, thermogravimetry (TG), and differential thermal analysis (DTA) were used to characterize the light crude oil combustion and kinetics in the presence of copper(I) chloride (CuCl) and magnesium chloride (MgCl2·6H2O). In TG-DTA experiments with magnesium chloride, three reaction regions were identified, known as distillation, low-temperature oxidation (LTO), and high-temperature oxidation (HTO). In the case of copper(I) chloride, two main transitional stages are observed with...
Combustion kinetics of crude oils
Kök, Mustafa Verşan (Informa UK Limited, 2002-01-01)
In this research, the reaction rates related to an in-situ combustion process were investigated and the effect of heating rate and crude oil type on the reaction rates were investigated. A laboratory model was used to run reaction kinetic experiments in unconsolidated limestone packs using three different crude oils. Experiments were performed under the same pressure and airflow rate and at two different heating rates. It was observed that oxidation of crude oil porous media follows a series of reactions. T...
Combustion performance and kinetics of oil shales
Kök, Mustafa Verşan (Informa UK Limited, 2016-01-01)
In this research, combustion performance and kinetics of two Turkish oil shales were investigated using differential scanning calorimetry (DSC), thermogravimetry (TGA/DTG), and thermogravimetry-mass spectrophotometry (TG-MS) techniques at three different heating rates (10, 30, and 50 degrees C/min). The combustion reaction occurred in two different regions and the corresponding mass loss of oil shales was calculated. Activation energies of oil shale samples are calculated using three different methods and t...
Combustion characteristics of coal briquettes. 2. Reaction kinetics
Altun, Naci Emre; Bagci, AS (American Chemical Society (ACS), 2003-09-01)
This study comprises the influence of the major briquetting parameters, such as binder type and amount of binder and water addition, on the combustion kinetics of the coal briquettes. In this manner, briquettes that have been prepared with different organic agents (molasses, carboxyl methyl cellulose, Peridur XC3, Peridur C10, and sulfide liquor) and inorganic agents (cement and bentonite) were combusted in a reaction cell assembly that operated in coordination with a continuous gas analyzer. Moreover, not ...
Citation Formats
M. V. Kök, E. Ceylan, and O. Ozkiliç, “Combustion characteristics of asphaltites,” Energy Sources, pp. 417–422, 2005, Accessed: 00, 2020. [Online]. Available: