Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Full wave electromagnetic optimizations using surface integral equations and the multilevel fast multipole algorithm
Date
2016-08-11
Author
KARAOSMANOGLU, BARISCAN
ONOL, CAN
GULER, SADRI
ALTINOKLU, ASKIN
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
144
views
0
downloads
Cite This
We present an electromagnetic optimization environment based on full-wave solutions via surface integral equations and the multilevel fast multipole algorithm (MLFMA). Optimizations are performed by using genetic algorithms, while the required trials are performed accurately via MLFMA. The developed mechanism can handle many different operations, such as portion moving/removing, rotation, and gap opening, that have different effects in the constructed matrix equations but that can efficiently be executed in numerical simulations. The effectiveness of the optimization environment is demonstrated on alternative problems, such as the design of pixel antennas and corrugated sheets for optimal electromagnetic responses.
Subject Keywords
Scattering
,
Antennas
,
Efficient
URI
https://hdl.handle.net/11511/36491
DOI
https://doi.org/10.1109/piers.2016.7734316
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Efficient preconditioning strategies for the multilevel fast multipole algorithm
Gurel, Levent; Malas, Tahir; Ergül, Özgür Salih (2007-03-30)
For the iterative solutions of the integral equation methods employing the multilevel fast multipole algorithm (MLFMA), effective preconditioning techniques should be developed for robustness and efficiency. Preconditioning techniques for such problems can be broadly classified as fixed preconditioners that are generated from the sparse near-field matrix and variable ones that can make use of MLFMA with the help of the flexible solvers. Among fixed preconditioners, we show that an incomplete LU precondition...
Modified Superformula Contours Optimized via Genetic Algorithms for Exponentially Converging 2D Solutions of MFIE
Guler, Sadri; Onol, Can; Ergül, Özgür Salih; Sever, Emrah; Dikmen, Fatih; Tuchkin, Yury A. (2017-05-25)
An infinitely smooth parametrical representation with derivatives of all orders is used, resulting into exponentially converging solutions of magnetic field integral equation (MFIE) in 2D either for TM or TE polarized excitations. A version of superformula modified for this purpose has been subject to optimization of its parameters via genetic algorithms to provide smooth parameterization for a desired boundary in two-dimensional problems. The organization of the MFIE kernel and convergence of the solution ...
Full-wave Electromagnetic Optimizations of Photonic Crystals Involving Dielectric Rods
Eray, H.; Karaosmanoglu, B.; Ergül, Özgür Salih (2017-11-22)
We consider full-wave optimizations of photonic crystals (PhCs) involving dielectric rods to obtain desired output patterns for given excitations. Starting from a full grid, each rod is kept or extracted in order to maximize the power density at different output locations. PhCs are modeled as three-dimensional structures, which are analyzed via surface integral equations and the multilevel fast multipole algorithm, in order to investigate realistic problems without resorting to infinite-length assumptions. ...
Analysis of double-negative materials with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (2011-08-13)
We present a fast and accurate analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). DNMs are commonly used as simplified models of metamaterials at resonance frequencies and are suitable to be formulated with surface integral equations. However, realistic metamaterials and their models are usually very large with respect to wavelength and their accurate solutions require fast algorithms, such as MLFMA. We consider iterative solutio...
Benchmark Solutions of Large Problems for Evaluating Accuracy and Efficiency of Electromagnetics Solvers
Gurel, Levent; Ergül, Özgür Salih (2011-07-08)
We present a set of benchmark problems involving conducting spheres and their solutions using a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Accuracy of the implementation is tested by comparing the computational results with analytical Mie-series solutions. Reference solutions are made available on an interactive website to evaluate and compare the accuracy and efficiency of fast solvers. We also demonstrate the capabilities of our solver on real-life problems involving compl...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. KARAOSMANOGLU, C. ONOL, S. GULER, A. ALTINOKLU, and Ö. S. Ergül, “Full wave electromagnetic optimizations using surface integral equations and the multilevel fast multipole algorithm,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36491.