Analysis of double-negative materials with surface integral equations and the multilevel fast multipole algorithm

Download
2011-08-13
We present a fast and accurate analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). DNMs are commonly used as simplified models of metamaterials at resonance frequencies and are suitable to be formulated with surface integral equations. However, realistic metamaterials and their models are usually very large with respect to wavelength and their accurate solutions require fast algorithms, such as MLFMA. We consider iterative solutions of DNMs with MLFMA and we investigate the accuracy and efficiency of solutions when DNMs are formulated with two recently developed formulations, namely, the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE). Numerical results on canonical objects are consistent with previous results in the literature on ordinary objects.
CEM'11 Computational Electromagnetics International Workshop

Suggestions

Rigorous Analysis of Double-Negative Materials with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2012-02-01)
We present rigorous analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of numerical solutions are investigated when DNMs are formulated with two recently developed formulations, i.e., the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCHE). Simulation results on canonical objects are consistent with previous results in the literature on ordin...
Fast and Accurate Analysis of Homogenized Metamaterials With the Surface Integral Equations and the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2011-01-01)
Fast and accurate analysis of double-negative materials (DNMs) with the surface integral equations and the multilevel fast multipole algorithm (MLFMA) is considered. DNMs, which are commonly used as simplified models of metamaterials at resonance frequencies, can be formulated with the surface integral equations. Two recently developed formulations-namely, the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE)-are used to formulate DNMs. Ite...
Fast and accurate analysis of optical metamaterials using surface integral equations and the parallel multilevel fast multipole algorithm
Ergül, Özgür Salih (2013-09-13)
We present fast and accurate simulations of optical metamaterials using surface integral equations and the multilevel fast multipole algorithm (MLFMA). Problems are formulated with the electric and magnetic current combined-field integral equation and solved iteratively with MLFMA, which is parallelized using the hierarchical strategy on distributed-memory architectures. Realistic metamaterials involving dielectric, perfectly conducting, and plasmonic regions of finite extents are solved rigorously with the...
Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (IOP Publishing, 2012-06-01)
Composite nanoparticles involving multiple parts with different material properties are analyzed rigorously with surface integral equations and the multilevel fast multipole algorithm. Accuracy and efficiency of the developed parallel implementation are demonstrated on spherical objects with dielectric, perfectly conducting, plasmonic, and double-negative regions. Significant effects of the formulation on numerical solutions are also considered to show the tradeoff between the efficiency and accuracy.
Investigation of nanoantennas using surface integral equations and the multilevel fast multipole algorithm
Karaosmanoglu, Barıscan; Gur, Ugur Merıc; Ergül, Özgür Salih (2015-07-09)
A rigorous analysis of nanoantennas using surface integral equations and the multilevel fast multipole algorithm (MLFMA) is presented. Plasmonic properties of materials at optical frequencies are considered by using the Lorentz-Drude models and employing surface formulations for penetrable objects. The electric and magnetic current combined-field integral equation is preferred for fast and accurate solutions, which are further accelerated by an MLFMA implementation that is modified for plasmonic structures....
Citation Formats
Ö. S. Ergül, “Analysis of double-negative materials with surface integral equations and the multilevel fast multipole algorithm,” presented at the CEM′11 Computational Electromagnetics International Workshop, Izmir, Turkey, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39793.