Stretchable/flexible silver nanowire electrodes for energy device applications

Jung, Jinwook
Cho, Hyunmin
Yuksel, Recep
Kim, Dongkwan
Lee, Habeom
Kwon, Jinhyeong
Lee, Phillip
Yeo, Junyeob
Hong, Sukjoon
Ünalan, Hüsnü Emrah
Han, Seungyong
Ko, Seung Hwan
Research on sustainable and high-efficiency energy devices has recently emerged as an important global issue. These devices are now moving beyond the form of a bulk, rigid platform to a portable, flexible/stretchable format that is easily available in our daily lives. Similar to the development of an active layer for the production of next-generation energy devices, the fabrication of flexible/stretchable electrodes for the easy flow of electrons is also very important. Silver nanowire electrodes have high electronic conductivity even in a flexible/stretchable state due to their high aspect ratio and percolation network structures compared to conventional electrodes. Herein, we summarize the research in the field of flexible/stretchable electronics on energy devices fabricated using silver nanowires as the electrodes. Additionally, for a systematic presentation of the current research trends, this review classifies the surveyed research efforts into the categories of energy production, storage, and consumption.


Lithium-intercalation oxides for rechargeable batteries
Ceder, Gerbrand; VanderVen, Anton; Aydınol, Mehmet Kadri (Springer Science and Business Media LLC, 1998-09-01)
Since the introduction of the LixC/LiCoO2 cell, rechargeable lithium batteries have become the technology of choice for applications where volume or weight are a consideration (e.g., laptop computers and cell phones). The focus of current research in cathode-active materials is on less-expensive or higher-performance materials than LiCoO2. This article illustrates how first-principles calculations can play a critical role in obtaining the understanding needed to design improved cathode oxides.
Fabrication and characterization of single crystalline silicon solar cells
Es, Fırat; Turan, Raşit; Department of Physics (2010)
The electricity generation using photovoltaic (PV) solar cells is the most viable and promising alternative to the fossil-fuel based technologies which are threatening world’s climate. PV cells directly convert solar energy into electrical power through an absorption process that takes place in a solid state device which is commonly fabricated using semiconductors. These devices can be employed for many years with almost no degradation and maintenance. PV technologies have been diversified in different dire...
Data Mining-Based Upscaling Approach for Regional Wind Power Forecasting: Regional Statistical Hybrid Wind Power Forecast Technique (RegionalSHWIP)
Ozkan, Mehmet Baris; Karagöz, Pınar (Institute of Electrical and Electronics Engineers (IEEE), 2019-01-01)
With the increasing need for the energy, the importance of renewable energy sources has also been increasing. In order to include the power produced by the wind into electricity grid in a controlled manner, power prediction has an important role. To produce a reliable wind power forecast, obtaining Wind Power Plants' (WPP) power generation data in real time and constructing the power forecast model with historical production values is a desirable action plan. However, this situation may not be applicable fo...
Simulation of equal channel angular pressing applied to produce structures with ultrafine-sized grains
Karpuz, Pinar; Şimşir, Caner; Gür, Cemil Hakan (Inderscience Publishers, 2009-01-01)
Severe plastic deformation methods are of great interest in industrial forming applications, as they give rise to significant refinement in microstructures and improvements in mechanical and physical properties. In the 'equal channel angular pressing (ECAP)', which is the most common method for production of ultrafine grained bulk samples, very high plastic strains are introduced into the bulk material without any change in cross section. In this study, the plastic deformation behaviour of the materials sub...
Electrostatic Stabilization of Alumina Nanopowder Suspensions
Çınar, Simge (American Scientific Publishers, 2014-03-01)
Electrostatic stabilization has an impact on a broad range of applications. Previous research has shown that concentrated alumina nanopowder suspensions can be stabilized at specific ranges of ionic strength and pH. This study investigated the stability of alumina nanopowder suspensions in terms of viscosity measurements as a function of different electrolyte concentration and suspension pH. Using alumina nanopowders with an average particle size of about 50 nm, stable suspensions were obtained with 0.020 ≤...
Citation Formats
J. Jung et al., “Stretchable/flexible silver nanowire electrodes for energy device applications,” NANOSCALE, pp. 20356–20378, 2019, Accessed: 00, 2020. [Online]. Available: