Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical and experimental investigation of damping in a dam-break problem with fluid-structure interaction
Date
2019-04-01
Author
Demir, Abdullah
Dincer, Ali Ersin
Bozkuş, Zafer
Tijsseling, Arris S.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
295
views
0
downloads
Cite This
There have been few experimental and numerical studies on damping effects in fluid-structure interaction (FSI) problems. Therefore, a comprehensive experimental study was conducted to investigate such effects. In experiments, a water column in a container was released and hit a rubber plate. It continued its motion until hitting a downstream wall where pressure transducers had been placed. The experiments were repeated using rubber plates with different thickness and material properties. Free-surface profiles, displacements of the rubber plates, and pressures were recorded. In addition, a numerical model was developed to simulate the violent interaction between the fluid and the elastic structure. Smoothed particle hydrodynamics (SPH) and finite element method (FEM) were used to model the fluid and the structure. Contact mechanics was used to model the coupling mechanism. The obtained numerical results were in agreement with the experimental data. We found that damping is a less important parameter in the FSI problem considered.
Subject Keywords
General Engineering
URI
https://hdl.handle.net/11511/36606
Journal
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A
DOI
https://doi.org/10.1631/jzus.a1800520
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Mathematical modeling of horizontal two-phase flow through fully eccentric annuli
Ömürlü, Çiğdem; Özbayoğlu, Evren; Department of Petroleum and Natural Gas Engineering (2006)
The primary objective of this study is to understand the mechanism, the hydraulics and the characteristics, of the two-phase flow in horizontal annuli. While achieving this goal, both theoretical and experimental works have been conducted extensively. The METU-PETE-CTMFL (Middle East Technical University, Petroleum and Natural Gas Engineering Department, Cuttings Transport and Multiphase Flow Laboratory) multiphase flow loop consists of 4.84 m long eccentric horizontal acrylic pipes having 0.1143m inner dia...
Experimental modal analysis of a steel grid frame
Kaya, Hüseyin; Türer, Ahmet; Department of Civil Engineering (2004)
In this study, experimental modal analysis was studied. Experimental modal analysis includes modal testing, modal parameter estimation and calibration. For this purpose a 4 span skewed steel frame was constructed in Structural Mechanics Laboratory of Civil Engineering Department of METU. The model was transported to Vibration and Acoustic Laboratory of Mechanical Engineering Department of METU. The tests were conducted by cooperation with Vibration and Acoustics Laboratory. Due to lack of experimental modal...
RECONSTRUCTION OF PERMITTIVITY AND CONDUCTIVITY PROFILES OF A DIELECTRIC SLAB IN THE TIME DOMAIN BY DESCENT METHODS
ONDER, M; Kuzuoğlu, Mustafa (Institution of Engineering and Technology (IET), 1992-10-01)
An optimisation approach is presented for the problem of reconstructing the permittivity and conductivity profiles of a dielectric slab from the reflected and transmitted field data. The problem is treated as an optimal control problem where the norm of the difference of measured and calculated boundary data is minimised subject to the state equation governing the system. The original constrained optimisation problem is reduced to the evaluation of stationary points of an augmented functional which is obtai...
Assessment of dynamic response FD algorithms by beam and plate FE computations
Alaylioglu, H.; Oral, Süha; Alaylıoğlu, Ayşe (Elsevier BV, 1988-10)
Improvement in understanding of the process of direct integration of the equations of motion through numerical dissipation parameter interaction is being regarded as one of the significant achievements of structural dynamics research over the past quarter century. The numerical software fraternity has extended one-step integration algorithms, emphasizing controllable approximation characteristics with respect to such factors as period elongation and amplitude decay. These studies have resulted in setting up...
Statistical tolerancing using designed experiments in a noisy environment
Köksal, Gülser (Elsevier BV, 2003-03-01)
We consider the method of designed experiments for statistical tolerance analysis, and study the impact of experimental error on its results.-It is observed that presence of random error in the experiment environment (e.g. laboratory) could introduce bias in the moment estimators and increases their-respective variances. We propose adjustments to the method that would reduce the bias as well as the variance of these estimators. A numerical example is presented.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Demir, A. E. Dincer, Z. Bozkuş, and A. S. Tijsseling, “Numerical and experimental investigation of damping in a dam-break problem with fluid-structure interaction,”
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A
, pp. 258–271, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36606.