Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A phase-field model for fracture of unidirectional fiber-reinforced polymer matrix composites
Download
10.1007s00466-019-01812-1.pdf.pdf
Date
2020-04-01
Author
Denli, Funda Aksu
Gultekin, Osman
Holzapfel, Gerhard A.
Dal, Hüsnü
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
251
views
695
downloads
Cite This
This study presents a crack phase-field approach for anisotropic continua to model, in particular, fracture of fiber-reinforced matrix composites. Starting with the variational formulation of the multi-field problem of fracture in terms of the deformation and the crack phase fields, the governing equations feature the evolution of the anisotropic crack phase-field and the balance of linear momentum, presented for finite and small strains. A recently proposed energy-based anisotropic failure criterion is incorporated into the model with a constitutive threshold function regulating the crack initiation in regard to the matrix and the fibers in a superposed framework. Representative numerical examples are shown for the crack initiation and propagation in unidirectional fiber-reinforced polymer composites under Mode-I, Mode-II and mixed-mode bending. Model parameters are obtained by fitting to sets of experimental data. The associated finite element results are able to capture anisotropic crack initiation and growth in unidirectional fiber-reinforced composite laminates.
Subject Keywords
Mechanical Engineering
,
Computational Theory and Mathematics
,
Applied Mathematics
,
Ocean Engineering
,
Computational Mathematics
URI
https://hdl.handle.net/11511/36623
Journal
COMPUTATIONAL MECHANICS
DOI
https://doi.org/10.1007/s00466-019-01812-1
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework
ÖZDEMİR, İZZET; Yalçınkaya, Tuncay (Springer Science and Business Media LLC, 2014-08-01)
This paper focuses on the continuum scale modeling of dislocation-grain boundary interactions and enriches a particular strain gradient crystal plasticity formulation (convex counter-part of Yal double dagger inkaya et al., J Mech Phys Solids 59:1-17, 2011; Int J Solids Struct 49:2625-2636, 2012) by incorporating explicitly the effect of grain boundaries on the plastic slip evolution. Within the framework of continuum thermodynamics, a consistent extension of the model is presented and a potential type non-...
A new boundary element formulation for wave load analysis
Yalcin, O. Fatih; Mengi, Yalcin (Springer Science and Business Media LLC, 2013-10-01)
A new boundary element (BEM) formulation is proposed for wave load analysis of submerged or floating bodies. The presented formulation, through establishing an impedance relation, permits the evaluation of the hydrodynamic coefficients (added mass and damping coefficients) and the coefficients of wave exciting forces systematically in terms of system matrices of BEM without solving any special problem, such as, unit velocity or unit excitation problem. It also eliminates the need for scattering analysis in ...
An analysis of a linearly extrapolated BDF2 subgrid artificial viscosity method for incompressible flows
Demir, Medine (Elsevier BV, 2020-10-01)
This report extends the mathematical support of a subgrid artificial viscosity (SAV) method to simulate the incompressible Navier-Stokes equations to better performing a linearly extrapolated BDF2 (BDF2LE) time discretization. The method considers the viscous term as a combination of the vorticity and the grad-div stabilization term. SAV method introduces global stabilization by adding a term, then anti-diffuses through the extra mixed variables. We present a detailed analysis of conservation laws, includin...
A finite element variational multiscale method for the Navier-Stokes equations
Volker, John; Kaya Merdan, Songül (Society for Industrial & Applied Mathematics (SIAM), 2005-01-01)
This paper presents a variational multiscale method (VMS) for the incompressible Navier-Stokes equations which is defined by a large scale space L-H for the velocity deformation tensor and a turbulent viscosity nu(T). The connection of this method to the standard formulation of a VMS is explained. The conditions on L-H under which the VMS can be implemented easily and efficiently into an existing finite element code for solving the Navier - Stokes equations are studied. Numerical tests with the Smagorinsky ...
A nested iterative scheme for computation of incompressible flows in long domains
Manguoğlu, Murat; Tezduyar, Tayfun E.; Sathe, Sunil (Springer Science and Business Media LLC, 2008-12-01)
We present an effective preconditioning technique for solving the nonsymmetric linear systems encountered in computation of incompressible flows in long domains. The application category we focus on is arterial fluid mechanics. These linear systems are solved using a nested iterative scheme with an outer Richardson scheme and an inner iteration that is handled via a Krylov subspace method. Test computations that demonstrate the robustness of our nested scheme are presented.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. A. Denli, O. Gultekin, G. A. Holzapfel, and H. Dal, “A phase-field model for fracture of unidirectional fiber-reinforced polymer matrix composites,”
COMPUTATIONAL MECHANICS
, pp. 1149–1166, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36623.