Hybrid-Empirical Ground Motion Estimations for Georgia

Download
2016-10-01
Tsereteli, Nino
Askan Gündoğan, Ayşegül
Hamzehloo, Hossein
Ground motion prediction equations are essential for several purposes ranging from seismic design and analysis to probabilistic seismic hazard assessment. In seismically active regions without sufficiently strong ground motion data to build empirical models, hybrid models become vital. Georgia does not have sufficiently strong ground motion data to build empirical models. In this study, we have applied the host-totarget method in two regions in Georgia with different source mechanisms. According to the tectonic regime of the target areas, two different regions are chosen as host regions. One of them is in Turkey with the dominant strike-slip source mechanism, while the other is in Iran with the prevalence of reverse-mechanism events. We performed stochastic finite-fault simulations in both host and target areas and employed the hybrid-empirical method as introduced in Campbell (2003). An initial set of hybrid empirical ground motion estimates is obtained for PGA and SA at selected periods for Georgia.
ACTA GEOPHYSICA

Suggestions

Hybrid-empirical ground motion models for Georgia
Askan Gündoğan, Ayşegül (2015-03-01)
Ground motion prediction equations are essential for several purposes ranging from seismic design and analysis to probabilistic seismic hazard assessment. In seismically active regions without sufficient data to build empirical models, hybrid models become necessary. Georgia, despite being located in a region with moderate seismic activity, does not have sufficient strong ground motion data to build empirical ground motion models. In this study, we have applied the host-to-target method to two regions in Ge...
Multi-Mode Pushover Analysis with Generalized Force Vectors
Sucuoğlu, Haluk (2009-07-01)
A generalized pushover analysis procedure is developed for estimating the inelastic seismic response of structures under earthquake ground excitations. The procedure comprises applying a generalized force vector to the structure in an incremental form with increasing amplitude until a prescribed seismic demand is attained. A generalized force vector is expressed as a combination of modal forces, and simulates the instantaneous force distribution acting on the system when a given interstory drift reaches its...
Seismological and Engineering Demand Misfits for Evaluating Simulated Ground Motion Records
Karim Zadeh Naghshineh, Shaghayegh (2019-11-01)
Simulated ground motions have recently gained more attention in seismology and earthquake engineering. Since different characteristics of waveforms are expected to influence alternative structural response parameters, evaluation of simulations, for key components of seismological and engineering points of view is necessary. When seismological aspect is of concern, consideration of a representative set of ground motion parameters is imperative. Besides, to test the applicability of simulations in earthquake ...
An Interdisciplinary Approach for Regional Seismic Damage Estimation
Askan Gündoğan, Ayşegül; Erberik, Murat Altuğ; Karim Zadeh Naghshineh, Shaghayegh; Yakut, Ahmet (2017-01-09)
In order to mitigate seismic risk in urban regions, the first task is to identify potential seismic losses in future earthquakes. Seismic loss estimation is an interdisciplinary framework including a wide range of contributions from geophysical and earthquake engineers, physical and economic planners to insurance companies. In this study, a moderate size city in Turkey, namely Erzincan, is modeled completely from geophysical attributes to the built environment. Erzincan city is on the eastern part of the No...
Assessment of Simulated Ground Motions in Earthquake Engineering Practice: A Case Study for Duzce (Turkey)
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Yakut, Ahmet (2015-11-20)
Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the correspondi...
Citation Formats
N. Tsereteli, A. Askan Gündoğan, and H. Hamzehloo, “Hybrid-Empirical Ground Motion Estimations for Georgia,” ACTA GEOPHYSICA, pp. 1225–1256, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36639.