Structural vibration analysis of single walled carbon nanotubes with atom-vacancies

Download
2010
Doğan, İbrahim Onur
Recent investigations in nanotechnology show that carbon nanotubes (CNT) have one of the most significant mechanical, electrical and optical properties. Interactions between those areas like electrical, optical and mechanical properties are also very promising in both research and industrial fields. Those unique characteristics are built by mainly the atomistic structure of the carbon nanotubes. In this thesis, the effects of vacant atoms on single walled carbon nanotubes (SWCNT) are investigated using matrix stiffness method. In order to use this technique a linkage between structural mechanics and molecular mechanics is established. A code has been developed to construct the SWCNT with the desired chirality, extracting the vacant atoms with the corresponding atomic bonds between the neighbor nodes and calculating the effect of those vacancies on its vibrational properties. A finite element software is also utilized for validation of the code and results. In order to investigate the convergence of the effect of those vacant nodes a numerous number of analyses have been carried out with randomly positioned vacant atoms. Also consecutive vacant nodes have been positioned in order to investigate the effect on the structural properties through the length of a CNT. In addition to those, as a case study, the reduction in Young's modulus property because of the vacancies has also been investigated and the effects are tabulated in the report. It is concluded in this study that the any amount of vacant atoms have substantial effect on modal frequencies and Young's modulus. Chirality and the position of the vacancies are the main parameters determining the structural properties of a CNT.

Suggestions

Structural Vibration Analysis of Single Walled Carbon Nanotubes with Atom Vacancies
Dogan, Ibrahim Onur; Yazıcıoğlu, Yiğit (2014-11-01)
Recent investigations in nanotechnology show that carbon nanotubes have significant mechanical, electrical and optical properties. Interactions between those are also promising in both research and industrial fields. Those unique characteristics are mainly due to the atomistic structure of carbon nanotubes. In this paper, the structural effects of vacant atoms on single walled carbon nanotubes are investigated using matrix stiffness method. In order to use this technique, a linkage between structural mechan...
Impact damage sensing of multiscale composites through epoxy matrix containing carbon nanotubes
Arronche, Luciana; La Saponara, Valeria; Yesil, Sertan; Bayram, Göknur (2013-06-05)
Carbon nanotubes are used to provide increased electrical conductivity for polymer matrix materials, thus offering a method to monitor the structure's health. This work investigates the effect of impact damage on the electrical properties of multiscale composite samples, prepared with woven fiberglass reinforcement and epoxy resin modified with as-received multi-walled carbon nanotubes (MWCNTs). Moreover, this study addresses potential bias from manufacturing, and investigates the effectiveness of resistanc...
Mechanical fatique and life estimation analysis of printed circuit board components
Genç, Cem; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2006)
In this thesis, vibration induced fatigue life analysis of axial leaded Tantalum & Aluminum capacitors, PDIP and SM capacitors mounted on the printed circuit boards are performed. This approach requires the finite element model, material properties and dynamic characteristics of the PCB. The young modulus of the PCB material is obtained from 3 point bending tests, resonance frequencies are obtained from modal tests and transmissibility’s of the PCB are obtained from transmissibility tests which are used as ...
Design and analysis of filament wound composite tubes
Balya, Bora; Parnas, Kemal Levend; Department of Mechanical Engineering (2004)
This thesis is for the investigation of the design and analysis processes of filament wound composite tubes under combined loading. The problem is studied by using a computational tool based on the Finite Element Method (FEM). Filament wound tubes are modeled as multi layered orthotropic tubes. Several analyses are performed on layered orthotropic tubes by using FEM. Results of the FEM are examined in order to investigate characteristics of filament wound tubes under different combined loading conditions. W...
Mixed-mode fracture analysis of orthotropic functionally graded materials
Sarıkaya, Duygu; Dağ, Serkan; Department of Mechanical Engineering (2005)
Functionally graded materials processed by the thermal spray techniques such as electron beam physical vapor deposition and plasma spray forming are known to have an orthotropic structure with reduced mechanical properties. Debonding related failures in these types of material systems occur due to embedded cracks that are perpendicular to the direction of the material property gradation. These cracks are inherently under mixed-mode loading and fracture analysis requires the extraction of the modes I and II ...
Citation Formats
İ. O. Doğan, “Structural vibration analysis of single walled carbon nanotubes with atom-vacancies,” M.S. - Master of Science, Middle East Technical University, 2010.