Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
L-Dopa Synthesis on Conducting Polymers
Date
2010-01-01
Author
Erdogan, Huriye
Tuncagil, Sevinc
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
With regards to the synthesis of L-Dopa (l-3,4-dihydroxy phenylalanine) two types of biosensors were designed by immobilizing tyrosinase on conducting polymers; polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT). PPy and PEDOT were synthesized electrochemically and tyrosinase immobilized by entrapment during electropolymerization. The kinetic parameters of the designed biosensors, maximum reaction rate of the enzyme (Vmax) and Michaelis Menten constant (Km) were determined. Vmax were found as 0.013 for PPy matrix and 0.041 mol/min.electrode for PEDOT matrix. Km values were determined as 3.7 and 5.2mM for PPy and PEDOT matrices respectively. Calibration curves for enzyme activity vs. substrate concentration were drawn for the range of 0.8 to 2.5 mM L-Tyrosine. Optimum temperature and pH, operational and shelf life stabilities of immobilized enzyme were also examined.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/36674
Journal
JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY
DOI
https://doi.org/10.1080/10601320903526865
Collections
Department of Chemistry, Article