Reactive extrusion of poly(ethylene terephthalate)-(ethylene/methyl acrylate/glycidyl methacrylate)-organoclay nanocomposites

2007-04-01
Alyamac, Elif
Yılmazer, Ülkü
This study was conducted to investigate the effects of component concentrations and addition order of the components on the final properties of ternary nanocomposites composed of poly(ethylene terephthalate), organoclay, and an ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer acting as an impact modifier for PET. In this context, first, the optimum amount of the impact modifier was determined by melt compounding binary PET-terpolymer blends in a corotating twin-screw extruder. The amount of the impact modifier (5 wt%) resulting in the highest Young's modulus and moderate elongation at break was selected owing to its balanced mechanical properties. Thereafter, by using 5 wt% terpolymer content, the effects of organically modified clay concentration and addition order of the components on the properties of ternary nanocomposites were systematically investigated. Mechanical testing revealed that different addition orders of the materials significantly affected the mechanical properties. Among the investigated addition orders, the best sequence of component addition (PI-C) was the one in which poly(ethylene terephthalate) was first compounded with E-MA-GMA. Later, this mixture was compounded with the organoclay in the subsequent run. In X-ray diffraction analysis, extensive layer separation associated with delamination of the original clay structure occurred in PI-C and CI-P (Clay + Impact Modifier followed by PET) sequences with both 1 and 3 wt% clay contents. X-ray diffraction patterns showed that at these conditions exfoliated structures resulted as indicated by the disappearance of any peaks due to the diffraction within the consecutive clay layers.
POLYMER COMPOSITES

Suggestions

Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives
ÇAMURLU, PINAR; Kayahan, Senem; Toppare, Levent Kamil (Informa UK Limited, 2008-01-01)
In this study, construction of novel biosensors for the determination of phenolic compound was performed via immobilization of tyrosinase during the electrochemical synthesis of conducting block copolymers of 2-thiophen-3-yl-alkyl ester derivatives with 3,4-ethylenedioxythiophene and synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT). The resultant biosensors were characterized in terms of their maximum reaction rates, Michaelis-Menten constants (Km), temperature and pH stabilities. All the copolymer mat...
Degradation of Poly(2-hydroxyethyl methacrylate) Obtained by Radiation in Aqueous Solution
Varguen, Elif; Usanmaz, Ali (Informa UK Limited, 2010-01-01)
The degradation of poly(hydroxyethyl methacrylate), PHEMA obtained by -radiation induced polymerization of HEMA in aqueous solution, was studied. The polymer was a gel type and insoluble in common organic solvents. The DSC thermogram of the polymer gave a Tg value at 88.2 degrees C and an endothermic peak showed further polymerization or crosslinking at 110-160 degrees C. The degradation observed in TGA was a depolymerization type. However, the FT-IR of TGA fragments showed no monomer, which was degraded fu...
Conducting copolymers of random and block copolymers of electroactive and liquid crystalline monomers with pyrrole and thiophene
Camurlu, Pinar; Toppare, Levent Kamil; Yilmaz, Faruk; Yagci, Yusuf; Galli, Giancarlo (Informa UK Limited, 2007-03-01)
Block and random copolymers having 3-methyl thienylmethacrylate and 6-(4-cyanobiphenyl-4'-oxy) hexyl acrylate moieties were utilized as precursor polymers in this study. Electrochemical copolymerizations were performed in the presence of thiophene or pyrrole in acetonitrile-tetrabutylammonium tetrafluoroborate (TBAFB) at constant potential. The characterizations were performed by cyclic voltammetry (CV), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravime...
Impact modified poly(ethylene terephthalate)-organoclay nanocomposites
Alyamaç, Elif; Yılmazer, Ülkü; Department of Chemistry (2004)
This study was conducted to investigate the effects of component concentrations and addition order of the components, on the final properties of ternary nanocomposites composed of poly(ethylene terephthalate), organoclay, and an ethylene/methyl acrylate/glycidyl methacrylate (E-MA-GMA) terpolymer acting as an impact modifier for PET. In this context, first, the optimum amount of the impact modifier was determined by melt compounding binary PET-terpolymer blends in a corotating twin-screw extruder. The amoun...
Multipurpose selenophene containing conjugated polymers for optoelectronic applications
ONK, Ipek; HIZALAN, Gonul; CEVHER, ŞEVKİ CAN; HACIOGLU, Serife O.; Toppare, Levent Kamil; Çırpan, Ali (Informa UK Limited, 2017-03-04)
In this study, two new conjugated polymers were synthesized including benzotriazole (BTz) as the acceptor unit and selenophene as the bridge donor segment. These acceptors were coupled with fluorene and carbazole via Suzuki condensation reactions. Electrochemical band gaps were calculated as 2.45 eV for P1 and 2.40 eV for P2. Electrochemical and optical studies of polymers indicate that both polymers are promising candidates for organic solar cell (OSC) and polymer organic light emitting diode (PLED) applic...
Citation Formats
E. Alyamac and Ü. Yılmazer, “Reactive extrusion of poly(ethylene terephthalate)-(ethylene/methyl acrylate/glycidyl methacrylate)-organoclay nanocomposites,” POLYMER COMPOSITES, pp. 251–258, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56807.