Numerical Simulation of a Flexible X-Wing Flapping-Wing Micro Air Vehicle

Download
2017-07-01
Deng, S.
Perçin, Mustafa
van Oudheusden, B. W.
Bijl, H.
Remes, B.
Xiao, T.
Numerical simulations were performed to investigate the flowfield around a flexible flapping-wing micro air vehicle using an in-house-developed computational fluid dynamics solver. To include the dynamics of the flexible wings and its impact on the aerodynamic behavior of the micro air vehicle, the wing-deformation pattern during flapping was experimentally determined by a stereovision measurement. These data were subsequently interpolated to be employed as prescribed flapping kinematics in the numerical flow simulations, using a computational fluid dynamics solver that is based on a deformable overset-grid method. The computational results of the hovering configuration provide a quantitative prediction of the unsteady aerodynamics of the flapping-wing micro air vehicle in terms of aerodynamic force production and flow structures. The formation and evolution of the leading-/trailing-edge vortex and tip vortex were visualized. Additionally, by introducing an incoming freestream flow velocity in the simulations, the flowstructure related to the forward-flight configuration is investigated. The forces and the flow structures are compared with the experimental results from force and digital-particle-image-velocimetry measurements; a good agreement was illustrated that further evidenced the capability of the numerical methodology proposed in the present study.
AIAA JOURNAL

Suggestions

Numerical and experimantal analysis of flapping motion
Sarıgöl, Ebru; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2007)
The aerodynamics of two-dimensional and three-dimensional flapping motion in hover is analyzed in incompressible, laminar flow at low Reynolds number regime. The aim of this study is to understand the physics and the underlying mechanisms of the flapping motion using both numerical tools (Direct Numerical Simulation) and experimental tools (Particle Image Velocimetry PIV technique). Numerical analyses cover both two-dimensional and three-dimensional configurations for different parameters using two differen...
Numerical Simulation of a Flapping Micro Aerial Vehicle Through Wing Deformation Capture
Tay, W. B.; de Baar, J. H. S.; Perçin, Mustafa; Deng, S.; van Oudheusden, B. W. (American Institute of Aeronautics and Astronautics (AIAA), 2018-8)
Three-dimensional numerical simulations of a four-wing flapping micro aerial vehicle (FMAV) with actual experimentally captured wing membrane kinematics have been performed using an immersed boundary method Navier-Stokes finite volume solver. To successfully simulate the clap and fling motion involving the wing intersection, the numerical solver has been specifically modified to use a newly improved interpolation template searching algorithm to prevent divergence. Reasonable agreement was found between the ...
Numerical investigations of lateral jets for missile aerodynamics
Ağsarlıoğlu, Ekin; Albayrak, Kahraman; Department of Mechanical Engineering (2011)
In this thesis, effects of sonic lateral jets on aerodynamics of missiles and missilelike geometries are investigated numerically by commercial Computational Fluid Dynamics (CFD) software FLUENT. The study consists of two parts. In the first part, two generic missile-like geometries with lateral jets, of which experimental data are available in literature, are analyzed by the software for validation studies. As the result of this study, experimental data and CFD results are in good agreement with each other...
Aerodynamic parameter estimation using flight test data
Kutluay, Ümit; Platin, Bülent Emre; Mahmutyazıcıoğlu, Gökmen; Department of Mechanical Engineering (2011)
This doctoral study aims to develop a methodology for use in determining aerodynamic models and parameters from actual flight test data for different types of autonomous flight vehicles. The stepwise regression method and equation error method are utilized for the aerodynamic model identification and parameter estimation. A closed loop aerodynamic parameter estimation approach is also applied in this study which can be used to fine tune the model parameters. Genetic algorithm is used as the optimization ker...
Numerical analysis of convective heat transfer of nanofluids in circular ducts with two-phase mixture model approach
Sert, İsmail Ozan; Sezer Uzol, Nilay (2016-09-01)
Computational fluid dynamics simulations for initially hydro-dynamically fully developed laminar flow with nanofluids in a circular duct under constant wall temperature condition are performed with two-phase mixture model by using Fluent software. Thermal behaviors of the system are investigated for constant wall temperature condition for Al2O3/water nanofluid. Hamilton–Crosser model and the Brownian motion effect are used for the thermal conductivity model of nanofluid instead of the Fluent default model f...
Citation Formats
S. Deng, M. Perçin, B. W. van Oudheusden, H. Bijl, B. Remes, and T. Xiao, “Numerical Simulation of a Flexible X-Wing Flapping-Wing Micro Air Vehicle,” AIAA JOURNAL, pp. 2295–2306, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36676.