Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Biomechanical Investigation of Disturbed Hemodynamics-Induced Tissue Degeneration in Abdominal Aortic Aneurysms Using Computational and Experimental Techniques
Download
index.pdf
Date
2019-05-31
Author
Salman, Huseyin Enes
Ramazanlı, Burcu
Yavuz, Mehmet Metin
Yalcin, Huseyin Cagatay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
228
views
125
downloads
Cite This
Abdominal aortic aneurysm (AAA) is the dilatation of the aorta beyond 50% of the normal vessel diameter. It is reported that 4-8% of men and 0.5-1% of women above 50 years of age bear an AAA and it accounts for similar to 15,000 deaths per year in the United States alone. If left untreated, AAA might gradually expand until rupture; the most catastrophic complication of the aneurysmal disease that is accompanied by a striking overall mortality of 80%. The precise mechanisms leading to AAA rupture remains unclear. Therefore, characterization of disturbed hemodynamics within AAAs will help to understand the mechanobiological development of the condition which will contribute to novel therapies for the condition. Due to geometrical complexities, it is challenging to directly quantify disturbed flows for AAAs clinically. Two other approaches for this investigation are computational modeling and experimental flow measurement. In computational modeling, the problem is first defined mathematically, and the solution is approximated with numerical techniques to get characteristics of flow. In experimental flow measurement, once the setup providing physiological flow pattern in a phantom geometry is constructed, velocity measurement system such as particle image velocimetry (PIV) enables characterization of the flow. We witness increasing number of applications of these complimentary approaches for AAA investigations in recent years. In this paper, we outline the details of computational modeling procedures and experimental settings and summarize important findings from recent studies, which will help researchers for AAA investigations and rupture mechanics.
Subject Keywords
Abdominal aortic aneurysm
,
Rupture risk assessment
,
Finite element analysis
,
Computational fluid dynamics
,
Fluid-structure interaction
,
Particle image velocimetry
,
Hemodynamics
,
Experimental fluid mechanics
URI
https://hdl.handle.net/11511/36699
Journal
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY
DOI
https://doi.org/10.3389/fbioe.2019.00111
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Experimental investigation of hemodynamics in abdominal aortic aneurysm
Fathipour, Amirhossein; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2022-9)
Abdominal aortic aneurysm (AAA), the enduring enlargement of the aorta, is a serious clinical condition with a very high mortality rate when it ruptures. Even though the precise causes of the dilation and rupture mechanisms of the aorta are still unknown, flow-related structures inside the AAA, including vortex formations and wall shear stresses, are associated with these mechanisms. The present study aims to characterize the flow patterns and their evolutions in two aneurysm models, simplified elliptic geo...
Characterization of wall shear stress in abdominal aortic aneurysm phantom using particle image velocimetry
Türk, Semih; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2021-9)
Abdominal Aortic Aneurysm (AAA) is defined as the enlargement of the largest artery in the abdominal cavity, the abdominal aorta. The vascular rupture begins to pose a risk after a certain enlargement, and the rupture is described as one of the most critical emergencies in medicine. The disease is labeled as the 14th disease with the highest mortality rate. Thus, predicting the progression of the disease is vitally important. Hence, researchers are trying to identify and standardize all biological and mecha...
Growth model for abdominal aortic aneurysms using longitudinal CT images
Akkoyun, Emrah; Acar, Aybar Can; Department of Health Informatics (2020)
An Abdominal Aortic Aneurysm (AAA) is diagnosed by an enlargement of the abdominal aorta. The rupture of an AAA, associated with high mortality, is eventually observed if no surgical intervention is performed. Aneurysm repair prior to rupture is thus vital. The decision to intervene is made primarily based on the AAA size measured by a maximum diameter or its growth rate. However, 10 – 24% of aneurysms below the intervention threshold experience rupture in some series. There are many complex interactions in...
Characterization of vortex ring in abdominal aortic aneurysm phantom using particle image velocimetry
Gökçek, Kerem Tuğ; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2021-9)
Abdominal aortic aneurysm (AAA) is the permanent enlargement of the abdominal artery that may even rupture at the end, and it is a critical medical situation with a high mortality rate. Although there are some approaches to model its enlargement and rupture, a complete understanding is far from over. A vortex ring is generated during physiological flow pattern, and its evolution should be analyzed in detail to understand its effect on the flow field. The aim of this study is to investigate and characterize ...
Investigation of fluid structure interaction in cardiovascular system from diagnostic and pathological perspective
Salman, Hüseyin Enes; Yazıcıoğlu, Yiğit; Sert, Cüneyt; Department of Mechanical Engineering (2012)
Atherosclerosis is a disease of the cardiovascular system where a stenosis may develop in an artery which is an abnormal narrowing in the blood vessel that adversely affects the blood flow. Due to the constriction of the blood vessel, the flow is disturbed, forming a jet and recirculation downstream of the stenosis. Dynamic pressure fluctuations on the inner wall of the blood vessel leads to the vibration of the vessel structure and acoustic energy is propagated through the surrounding tissue that can be de...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. E. Salman, B. Ramazanlı, M. M. Yavuz, and H. C. Yalcin, “Biomechanical Investigation of Disturbed Hemodynamics-Induced Tissue Degeneration in Abdominal Aortic Aneurysms Using Computational and Experimental Techniques,”
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36699.