Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modelling of graded rectangular micro-plates with variable length scale parameters
Date
2018-03-10
Author
Aghazadeh, Reza
Dağ, Serkan
Ciğeroğlu, Ender
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.
Subject Keywords
Functionally graded micro-plates
,
Strain gradient elasticity
,
Length scale parameters
,
Bending
,
Free vibrations
,
Buckling
URI
https://hdl.handle.net/11511/36728
Journal
STRUCTURAL ENGINEERING AND MECHANICS
DOI
https://doi.org/10.12989/sem.2018.65.5.573
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
New modeling and analysis methods for micro-plates
Aghazadeh, Reza; Dağ, Serkan; Ciğeroğlu, Ender; Department of Mechanical Engineering (2017)
This study presents strain gradient elasticity based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates subjected to mechanical and thermal loadings. Mathematically the non-classical modified couple stress and classical elasticity theories are the two special cases of the new model. The methods developed allow taking into account spatial variations of length scale parameters of strain gradient elasticity and modified couple stress theory. Gove...
Bending and free vibrations of functionally graded annular and circular micro-plates under thermal loading
Eshraghi, Iman; Dağ, Serkan; Soltani, Nasser (2016-03-01)
We introduce solution methods capable of treating static bending and free vibration problems involving thermally loaded functionally graded annular and circular micro-plates. Formulation is based on modified couple stress theory; and related governing partial differential equations and boundary conditions are derived by means of Hamilton's principle. Displacement field is expressed in a unified way so as to produce numerical results in accordance with Kirchhoff, Mindlin, and third-order shear deformation th...
Consideration of spatial variation of the length scale parameter in static and dynamic analyses of functionally graded annular and circular micro-plates
Eshraghi, Iman; Dağ, Serkan; Soltani, Nasser (2015-09-01)
This article introduces new methods for static and free vibration analyses of functionally graded annular and circular micro-plates, which can take into account spatial variation of the length scale parameter. The underlying higher order continuum theory behind the proposed approaches is the modified couple stress theory. A unified way of expressing the displacement field is adopted so as to produce numerical results for three different plate theories, which are Kirchhoff plate theory (KPT), Mindlin plate t...
Thermal effect on bending, buckling and free vibration of functionally graded rectangular micro-plates possessing a variable length scale parameter
Aghazadeh, Reza; Dağ, Serkan; Ciğeroğlu, Ender (2018-08-01)
Modified couple stress based model is presented to investigate statics, dynamics and stability of functionally graded micro-plates subjected to mechanical and thermal loadings. The features of FGM micro-plate including length scale parameter of modified couple stress theory assumed to be graded across the thickness by varying volume fractions of constituents. The governing equations of motion and boundary conditions are derived by means of Hamilton's principle. Displacement field is expressed in a unified w...
Nonlinear Vibration Analysis of Uniform and Functionally Graded Beams with Spectral Chebyshev Technique and Harmonic Balance Method
Dedekoy, Demir; Ciğeroğlu, Ender; Bediz, Bekir (2023-01-01)
In this paper, nonlinear forced vibrations of uniform and functionally graded Euler-Bernoulli beams with large deformation are studied. Spectral and temporal boundary value problems of beam vibrations do not always have closed-form analytical solutions. As a result, many approximate methods are used to obtain the solution by discretizing the spatial problem. Spectral Chebyshev technique (SCT) utilizes the Chebyshev polynomials for spatial discretization and applies Galerkin's method to obtain boundary condi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Aghazadeh, S. Dağ, and E. Ciğeroğlu, “Modelling of graded rectangular micro-plates with variable length scale parameters,”
STRUCTURAL ENGINEERING AND MECHANICS
, pp. 573–585, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36728.