Thermal effect on bending, buckling and free vibration of functionally graded rectangular micro-plates possessing a variable length scale parameter

2018-08-01
Modified couple stress based model is presented to investigate statics, dynamics and stability of functionally graded micro-plates subjected to mechanical and thermal loadings. The features of FGM micro-plate including length scale parameter of modified couple stress theory assumed to be graded across the thickness by varying volume fractions of constituents. The governing equations of motion and boundary conditions are derived by means of Hamilton's principle. Displacement field is expressed in a unified way capable of producing results on the base of Kirchhoff, Mindlin, and third order shear deformation theories. The system of equations is solved numerically by implementing differential quadrature method. Verification studies are carried out by comparing the results of special cases to those available in the literature. Further numerical results regarding static thermal bending, natural frequencies and critical buckling loads of micro-plates undergoing uniform temperature change are provided. Presented numerical results clearly illustrate size effect at micro-scale, impact of length scale parameter variations and influence of initial thermal displacements and stresses upon mechanical behavior of functionally graded rectangular micro-plates.
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS

Suggestions

Modelling of graded rectangular micro-plates with variable length scale parameters
Aghazadeh, Reza; Dağ, Serkan; Ciğeroğlu, Ender (2018-03-10)
This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce n...
Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach
Dağ, Serkan (2006-12-01)
A new computational method based on the equivalent domain integral (EDI) is developed for mode I fracture analysis of orthotropic functionally graded materials (FGMs) subjected to thermal stresses. By using the constitutive relations of plane orthotropic thermoelasticity, generalized definition of the J-integral is converted to an equivalent domain integral to calculate the thermal stress intensity factor. In the formulation of the EDI approach, all the required thermomechanical properties are assumed to ha...
Mechanical properties of CdZnTe nanowires under uniaxial stretching and compression: A molecular dynamics simulation study
Kurban, Mustafa; Erkoç, Şakir (2016-09-01)
Structural and mechanical properties of ternary CdZnTe nanowires have been investigated by performing molecular dynamics simulations using an atomistic potential. The simulation procedures are carried out as uniaxial stretching and compression at 1 K and 300 K. The results demonstrate that the mechanical properties of CdZnTe ternary nanowires show significantly a dependence on size and temperature under uniaxial stretching and compression.
Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants
Selim, K; Özkar, Saim; Yılmaz, Levent (Wiley, 2000-07-18)
Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were used to investigate the thermal behavior of glycidyl azide polymer (GAP) and GAP-based binders, which are of potential interest for the development of high-performance energetic propellants. The glass transition temperature (T-g) and decomposition temperature (T-d) of pure GAP were found to be -45 and 242 degrees C, respectively. The energy released during decomposition (Delta H-d) was measured as 485 cal/g. The effect of th...
Elastic analysis of orthotropic cylinders under different boundary conditions
Farukoğlu, Ömer Can; Eraslan, Ahmet Nedim; Department of Engineering Sciences (2016)
Analytical solutions are derived to examine the elastic responses of fixed end cylinders made of orthotropic materials. Cylinders are investigated under different boundary conditions which are internal pressure, external pressure, combined pressure and annular rotation respectively. Making use of Maxwell relations, orthotropic cylinders are transformed to isotropic ones. In order to exhibit numerical examples different orthotropic materials are used and compared. It is observed that orthotrophy slightly inf...
Citation Formats
R. Aghazadeh, S. Dağ, and E. Ciğeroğlu, “Thermal effect on bending, buckling and free vibration of functionally graded rectangular micro-plates possessing a variable length scale parameter,” MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, pp. 3549–3572, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36048.