Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Probabilistic day-ahead system marginal price forecasting with ANN for the Turkish electricity market
Date
2017-01-01
Author
OZGUNER, Erdem
TOR, Osman Bulent
Güven, Ali Nezih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
This study presents a system day-ahead hourly market clearing price forecasting tool for the day-ahead (DA) market and a system DA hourly marginal price forecasting tool for the real-time market of the Turkish electric market (TEM). These forecasting tools are developed based on artificial neural networks (ANNs). A series of historical price data of the TEM are utilized to model and optimize the ANN structure and to develop the ANN-based price forecasting tool. The methodology used to select the optimum ANN architecture provides the minimum daily mean absolute percentage error for both day-ahead market prices in the TEM. Performances of the proposed ANN model and the multiple linear regression model in forecasting the day-ahead hourly market clearing price are compared. The proposed ANN model is modified using volatility analysis and the Bienayme Chebyshev inequality in order to forecast system marginal prices probabilistically within a lower and an upper boundary.
Subject Keywords
Artificial neural networks
,
Electricity market
,
Price forecasting
,
System marginal price
URI
https://hdl.handle.net/11511/36741
Journal
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
DOI
https://doi.org/10.3906/elk-1612-206
Collections
Department of Electrical and Electronics Engineering, Article