Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Discrimination of chemicals via refractive index by EF-FLRD
Date
2019-08-02
Author
Yolalmaz, Alim
Danışman, Mehmet Fatih
Esentürk, Okan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
9
views
0
downloads
Design and application of an evanescent field fiber loop ring-down (EF-FLRD) spectroscopy system for discrimination of chemicals via their refractive indices are presented. To our knowledge, this is the first system that utilizes visible light. The system employs a broadband laser source at 800 nm at 80 MHz whose pulses were selectively picked by a Pockels cell to eliminate overlap of the pulses in the cavity. Chemically etched fiber region was used as a sensing element and eight organic solvents were discriminated compared to the reference sample mainly due to their differences in refractive indices. The solvent dielectric constants cover a broad range from 2 (of decane) to 80 (of water) at 20 degrees C (dielectric constants are obtained from Solvent Polarities, , 2019). Prior to the measurements, optimization of data collection protocols, etched sensing region geometry, and the sample compartment configuration was achieved. The results show that solutions with a refractive index unit difference of 0.0018 (acetone-ethanol couple) were able to be differentiated as the lowest difference and the detectable lowest loss was calculated to be 1.10 x 10(-5) dB. A single measurement takes less than 1 min (which is limited by the control system) with the lowest error of 0.37% (for acetone) and the highest error of 1.71% (for ethanol) showing real-time measurement possibility. Simplicity and unique design of the set-up is a promising first step in construction/utilization of EF-FLRD systems for trace chemical detection in the visible range.
Subject Keywords
Physics and Astronomy (miscellaneous)
,
General Physics and Astronomy
URI
https://hdl.handle.net/11511/36777
Journal
APPLIED PHYSICS B-LASERS AND OPTICS
DOI
https://doi.org/10.1007/s00340-019-7261-5
Collections
Department of Chemistry, Article