Dynamical modelling of the flow over a flapping wing using proper orthogonal decomposition and system identification techniques

ÖZEN, G Deniz
Kurtuluş, Dilek Funda
A systematic approach for the dynamical modelling of the unsteady flow over a flapping wing is developed, which is based on instantaneous velocity field data of the flow collected using particle image velocimetry (PIV) and computational fluid dynamics (CFD) simulations. The location and orientation of the airfoil is obtained by image processing and the airfoil is filled with proper velocity data. Proper orthogonal decomposition (POD) is applied to these post-processed images to compute POD modes and time coefficients, and a discrete-time state-space dynamical model is fit to the trajectories of the time coefficients using subspace system identification (N4SID). The procedure is verified using PIV and CFD data obtained from a pitching NACA0012 airfoil. The simulation results confirm that the dynamical model obtained from the method proposed can represent the flow dynamics with acceptable accuracy.


Numerical investigation of characteristics of pitch and roll damping coefficients for missile models
Kayabaşı, İskander; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2012)
In this thesis the characteristics of pitch and roll damping coefficients of missile models are investigated by using Computational Fluid Dynamics (CFD) techniques. Experimental data of NACA0012 airfoil, Basic Finner (BF) and Modified Basic Finner (MBF) models are used for validation and verification studies. Numerical computations are performed from subsonic to supersonic flow regimes. Grid refinement and turbulence model selection studies are conducted before starting the dynamic motion simulations. Numer...
Measurement of leading and trailing edge vortex shedding mechanism for flapping airfoil in hover using particle image velocimetry technique
Çekinmez, Aybüge; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2013)
In this thesis, the vortex shedding formation/mechanism for flapping airfoil making the figure of eight motion in hover is investigated experimentally using Particle Image Velocimetry (PIV) technique and numerically for some parameters determined. For this investigation, a new flapping mechanism is designed and implemented to the existing water tank, where the airfoil is traversed laterally, such that the motion depicts a figure of eight. The traversing system is moved both in x (horizontal) and y (vertical...
Application of spring analogy mesh deformation technique in airfoil design optimization
Yang, Yosheph; Özgen, Serkan; Department of Aerospace Engineering (2015)
In this thesis, an airfoil design optimization with Computational Fluid Dynamics (CFD) analysis combined with mesh deformation method is elaborated in detail. The mesh deformation technique is conducted based on spring analogy method. Several improvements and modifications are addressed during the implementation of this method. These enhancements are made so that good quality of the mesh can still be maintained and robustness of the solution can be achieved. The capability of mesh deformation is verified by...
Aerodynamic characteristics of flapping motion in hover
Kurtuluş, Dilek Funda; FARCY, A.; ALEMDAROGLU, N. (Springer Science and Business Media LLC, 2008-01-01)
The aim of the present work is to understand the aerodynamic phenomena and the vortex topology of an unsteady flapping motion by means of numerical and experimental methods. Instead of the use of real insect/bird wing geometries and kinematics which are highly complex and difficult to imitate by an exact modeling, a simplified model is used in order to understand the unsteady aerodynamics and vortex formation mechanisms during the different phases of the flapping motion. The flow is assumed to be laminar wi...
Aerodynamic shape optimization of a wing using 3d flow solutions with su2 and response surface methodology
Yıldırım, Berkay Yasin; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2021-4)
In this study, the aerodynamic shape optimization of a wing is performed by using 3D flow solutions together with response surface methodology. The purpose of this study is to optimize the aerodynamic shape of a wing to achieve the lowest possible drag coefficient while ensuring desired maneuvering capability and lateral stability. Aerodynamic shape optimization is performed for a wing of a turboprop trainer aircraft. Optimization objective and constraints are determined according to mission requirements an...
Citation Formats
O. DURMAZ, H. D. KARACA, G. D. ÖZEN, C. KASNAKOĞLU, and D. F. Kurtuluş, “Dynamical modelling of the flow over a flapping wing using proper orthogonal decomposition and system identification techniques,” MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, pp. 133–158, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36839.