Estradiol-Estrogen Receptor alpha Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway

2016-11-25
Yasar, Pelin
Ayaz, Gamze
Muyan, Mesut
17 beta-estradiol (E2), the primary circulating estrogen hormone, mediates physiological and pathophysiological functions of breast tissue mainly through estrogen receptor alpha (ER alpha). Upon binding to E2, ER alpha modulates the expression of target genes involved in the regulation of cellular proliferation primarily through interactions with specific DNA sequences, estrogen response elements (EREs). Our previous microarray results suggested that E2-ER alpha modulates CXXC5 expression. Because of the presence of a zinc-finger CXXC domain (ZF-CXXC), CXXC5 is considered to be a member of the ZF-CXXC family, which binds to non-methylated CpG dinucleotides. Although studies are limited, CXXC5 appears to participate as a transcription factor, co-regulator and/or epigenetic factor in the regulation of cellular events induced by various signaling pathways. However, how signaling pathways mediate the expression of CXXC5 is yet unclear. Due to the importance of E2-ER alpha signaling in breast tissue, changes in the CXXC5 transcription/synthesis could participate in E2-mediated cellular events as well. To address these issues, we initially examined the mechanism whereby E2-ER alpha regulates CXXC5 expression. We show here that CXXC5 is an E2-ER alpha responsive gene regulated by the interaction of E2-ER alpha with an ERE present at a region upstream of the initial translation codon of the gene.
SCIENTIFIC REPORTS

Suggestions

Molecular mechanism of estrogen-estrogen receptor signaling.
Yaşar, P; Ayaz, G; User, Sd; Güpür, G; Muyan, Mesut (2016-12-05)
17 beta-Estradiol (E2), as the main circulating estrogen hormone, regulates many tissue and organ functions in physiology. The effects of E2 on cells are mediated by the transcription factors and estrogen receptor (ER)alpha and ER beta that are encoded by distinct genes. Localized at the pen-membrane, mitochondria, and the nucleus of cells that are dependent on estrogen target tissues, the ERs share similar, as well as distinct, regulatory potentials. Different intracellular localizations of the ERs result ...
Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators
Muyan, Mesut; Yasar, Pelin; Ayaz, Gamze; User, Sirma Damla; Kazan, Hasan Huseyin; Huang, Yanfang (2015-08-21)
Estrogen receptor a (ER alpha), as a ligand-dependent transcription factor, mediates 17 beta-estradiol (E2) effects. ERa is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino-and carboxyl-termini. The interaction of the E2-activated ERa dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric t...
Functional importance of CXXC5 in E2-driven cellular proliferation
Razizadeh, Negin; Muyan, Mesut; Department of Biology (2019)
17β-estradiol (E2) as the main circulating estrogen hormone has an important role in the regulation of various tissues including mammary tissue. E2 effects target tissue functions by binding to the nuclear receptors, ERα and β. ERs regulate the expression of target genes. Previous studies conducted in our laboratory indicate that one of these estrogen responsive genes is CXXC5 which is regulated by ERα. CXXC5 has a highly conserved zinc-finger CXXC domain, which makes it a member of zinc-finger CXXC domain ...
Protein characterization of human YPEL2 and YPEL homolog yeast MOH1
Olgun, Çağla Ece; Muyan, Mesut; Department of Molecular Biology and Genetics (2018)
17ß-estradiol (E2), the main circulating estrogen hormone, has an important role in the physiological and pathophysiological regulation of many tissues and organs including breast tissue. Regulation of cell proliferation, differentiation and death in target tissues is mediated by E2. The estrogen receptor (ER), a transcription factor, provides the lasting effect of E2 on cells via regulation of targeting gene expression. Previous microarray and gene expression studies in our laboratory reveal that YPEL2, wh...
Structural and functional characterization of the CXXC-type zinc finger protein 5 (CXXC5)
Ayaz Şen, Gamze; Muyan, Mesut; Department of Biology (2018)
Estrogen hormones, particularly 17β-estradiol (E2), are involved in the regulation of physiological and pathophysiological functions of many organs and tissues including breast tissue. The expression of CXXC type zinc finger protein 5 (CXXC5) gene is regulated by E2 through estrogen receptor α. Due to a highly conserved zinc-finger CXXC domain (ZF-CXXC), CXXC5 is considered to be a member of ZF-CXXC family, which binds to non-methylated CpG dinucleotides of transcriptionally active DNA regions. This binding...
Citation Formats
P. Yasar, G. Ayaz, and M. Muyan, “Estradiol-Estrogen Receptor alpha Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway,” SCIENTIFIC REPORTS, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36882.