A METHOD FOR THE CALCULATION OF NATURAL FREQUENCIES OF ORTHOTROPIC AXISYMMETRICALLY LOADED SHELLS OF REVOLUTION

1994-01-01
Kayran, Altan
ARDIC, ES
A methodology is presented for the calculation of the natural frequencies of orthotropic axisymmetrically loaded shells of revolution including the effect of transverse shear deformation. The fundamental system of equations governing the free vibration of the stress-free shells of revolution are modified such that the initial stresses due to the axisymmetric loading are incorporated into the analysis. The linear equations on the vibration about the deformed state are solved by using the transfer matrix method which makes use of the multisegment numerical integration technique. This method is commonly known as frequency trial method. The solution for the initial stresses due to axisymmetric loading is omitted; since the application of the transfer matrix method, making use of multisegment numerical integration technique for both linear and nonlinear equations are available in the literature. The method is verified by applying it to the solution of the natural frequencies of spinning disks, for which exact solutions exist in the literature, and a deep paraboloid for which approximate solutions exist. The governing equations for a shell of revolution are used to approximate circular disks by decreasing the curvature of the shell of revolution to very low values, and good agreement is seen between the results of the present method and the exact solution for spinning disks and the approximate solution for a deep paraboloid.
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME

Suggestions

A refined dynamic theory for viscoelastic cylindrical shells and cylindrical laminated composites, Part 2: An application
Birlik, G.A.; Mengi, Yalçın (Elsevier BV, 1989-4)
In this study, the general approximate theory developed in Part 1 for shells is assessed for axially symmetric elastic waves propagating in a closed circular cylindrical shell (hollow rod). The spectra predicted by zeroth and second order approximate theories are determined for various values of shell thicknesses and the Poisson ratios and they are compared with those of exact theory. It is found that the agreement between the two is good. Approximate and exact cut-off frequencies match almost exactly. The ...
A NEW METHOD FOR HARMONIC RESPONSE OF NONPROPORTIONALLY DAMPED STRUCTURES USING UNDAMPED MODAL DATA
Özgüven, Hasan Nevzat (Elsevier BV, 1987-09-08)
A method of calculating the receptances of a non-proportionally damped structure from the undamped modal data and the damping matrix of the system is presented. The method developed is an exact method. It gives exact results when exact undamped receptances are employed in the computation. Inaccuracies are due to the truncations made in the calculation of undamped receptances. Numerical examples, demonstrating the accuracy and speed of the method when truncated receptance series are used are also presented. ...
THE HARMONIC RESPONSE OF UNIFORM BEAMS ON MULTIPLE LINEAR SUPPORTS - A FLEXURAL WAVE ANALYSIS
MEAD, DJ; Yaman, Yavuz (Elsevier BV, 1990-09-22)
A wave approach is developed for the exact analysis of the harmonic response of uniform finite beams on multiple supports. The beam may be excited by single or multi-point harmonic forces or moments; its supports may have general linear characteristics which may include displacement-rotation coupling. Use is made of the harmonic response function for an infinite beam subjected to a single-point harmonic force or moment. The unknowns of the finite beam problem are the support reaction forces/moments and the ...
A refined dynamic theory for viscoelastic cylindrical shells and cylindrical laminated composites, Part 1: General theory
Birlik, G.A.; Mengi, Yalçın (Elsevier BV, 1989-4)
Through the use of a new technique, approximate theories are developed for the dynamic response of viscoelastic cylindrical shells and cylindrical laminated composites (CLC). The new technique eliminates the inconsistencies between the deformation shapes assumed over the thickness of the shell and the boundary or interface conditions to be satisfied on its lateral surfaces. Accordingly, the theory correctly predicts the dynamic behavior of shells or CLC without using any correction factors. Due to its lengt...
THE RESIDUAL VARIABLE METHOD APPLIED TO ACOUSTIC-WAVE PROPAGATION FROM A SPHERICAL SURFACE
AKKAS, N; ERDOGAN, F (ASME International, 1993-01-01)
The classical wave equation in spherical coordinates is expressed in terms of a residual potential applying the Residual Variable Method. This method essentially eliminates the second derivative of the potential with respect to the radial coordinate from the wave equation. Thus, the dynamic pressure distribution on the surface of a spherical cavity can be studied by considering the cavity surface only. Moreover, the Residual Variable Method, being amenable to ''marching'' solutions in a finite-difference im...
Citation Formats
A. Kayran and E. ARDIC, “A METHOD FOR THE CALCULATION OF NATURAL FREQUENCIES OF ORTHOTROPIC AXISYMMETRICALLY LOADED SHELLS OF REVOLUTION,” JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, pp. 16–25, 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36963.