Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A NEW METHOD FOR HARMONIC RESPONSE OF NONPROPORTIONALLY DAMPED STRUCTURES USING UNDAMPED MODAL DATA
Date
1987-09-08
Author
Özgüven, Hasan Nevzat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
262
views
0
downloads
Cite This
A method of calculating the receptances of a non-proportionally damped structure from the undamped modal data and the damping matrix of the system is presented. The method developed is an exact method. It gives exact results when exact undamped receptances are employed in the computation. Inaccuracies are due to the truncations made in the calculation of undamped receptances. Numerical examples, demonstrating the accuracy and speed of the method when truncated receptance series are used are also presented. Advantages of the method over classical methods are discussed, and it is concluded that the method is most advantageous when used for a structure with frequency and/or temperature dependent damping properties, or when the non-proportional part of the damping is local. The technique suggested can easily be applied to structural modification problems if there is no additional degree-of-freedom due to the modifying structure.
Subject Keywords
Mechanical Engineering
,
Acoustics and Ultrasonics
,
Mechanics of Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/40949
Journal
JOURNAL OF SOUND AND VIBRATION
DOI
https://doi.org/10.1016/0022-460x(87)90541-4
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
A modal superposition method for non-linear structures
Kuran, B; Özgüven, Hasan Nevzat (Elsevier BV, 1996-01-25)
The dynamic response of multi-degree of freedom (MDOF) non-linear structures is usually determined by the numerical integration of equations of motion. This is computationally very costly for steady state response analysis. In this study, a powerful and economical method is developed for the harmonic response analysis of non-linear structures. In this method, the equations of motion are first converted into a set of non-linear algebraic equations, and then the number of equations to be solved is reduced by ...
A NEW FAMILY OF MODE-SUPERPOSITION METHODS FOR RESPONSE CALCULATIONS
AKGUN, MA (Elsevier BV, 1993-10-22)
A new family of mode-superposition methods for the computation of the forced response of proportionally damped systems with and without rigid body modes is investigated. The method may be considered to be an extension of the mode-acceleration method. It allows response calculations to be done with a very small subset of the modes of the system. Numerical examples are given for systems of order 20 and 40. Execution times and number of modes required for convergence are recorded. The particular order of the m...
Error analysis and feasibility study of dynamic stiffness matrix-based damping matrix identification
Özgen, Gökhan Osman (Elsevier BV, 2009-02-06)
Developing a method to formulate a damping matrix that represents the actual spatial distribution and mechanism of damping of the dynamic system has been an elusive goal. The dynamic stiffness matrix (DSM)-based damping identification method proposed by Lee and Kim is attractive and promising because it identifies the damping matrix from the measured DSM without relying on any unfounded assumptions. However, in ensuing works it was found that damping matrices identified from the method had unexpected forms ...
Direct identification and expansion of damping matrix for experimental-analytical hybrid modeling
Özgen, Gökhan Osman (Elsevier BV, 2007-11-20)
The theory of direct experimental identification of damping matrix based on the dynamic stiffness matrix (DSM) method is further developed in this work. Based on the relationship between the DSMs of the smaller experimental model and larger analytical model, the mathematical relationship between the damping matrices of the two models is established. Examining the relationship, two methods are developed that can be used to expand the experimental damping matrix to the size of the analytical model. Validity o...
A METHOD FOR THE CALCULATION OF NATURAL FREQUENCIES OF ORTHOTROPIC AXISYMMETRICALLY LOADED SHELLS OF REVOLUTION
Kayran, Altan; ARDIC, ES (ASME International, 1994-01-01)
A methodology is presented for the calculation of the natural frequencies of orthotropic axisymmetrically loaded shells of revolution including the effect of transverse shear deformation. The fundamental system of equations governing the free vibration of the stress-free shells of revolution are modified such that the initial stresses due to the axisymmetric loading are incorporated into the analysis. The linear equations on the vibration about the deformed state are solved by using the transfer matrix meth...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. N. Özgüven, “A NEW METHOD FOR HARMONIC RESPONSE OF NONPROPORTIONALLY DAMPED STRUCTURES USING UNDAMPED MODAL DATA,”
JOURNAL OF SOUND AND VIBRATION
, pp. 313–328, 1987, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40949.