Self-consistent model of thermal and ionization non-equilibrium spherical microwave discharge

2005-07-07
A self-consistent model of a spherical microwave discharge is presented. The model takes into account thermal and ionization non-equilibrium of the discharge plasma. We adopt a partial local thermodynamic equilibrium model for the plasma in two-temperature approximation. Numerical experiments are carried out for the discharge in argon at atmospheric pressure. Results are presented for the characteristics of the discharge plasma against the external parameters (the power and frequency of the applied electromagnetic field and the size of the discharge chamber). Presented model results are compared with the results for the ionization equilibrium model of the spherical microwave discharge.
JOURNAL OF PHYSICS D-APPLIED PHYSICS

Suggestions

Self-consistent model of non-equilibrium spherical microwave discharge
Rafatov, İsmail (IOP Publishing, 2004-10-21)
A self-consistent model of a non-equilibrium spherical microwave discharge is presented. We use a two-temperature plasma model. Numerical experiments are carried out for the discharge in argon at atmospheric pressure. Results are presented for the characteristics of the discharge plasma against the external parameters (the power and frequency of the applied electromagnetic field and the size of the discharge chamber).
Self-confinement of a fast pulsed electron beam generated in a double discharge
Goktas, H; Udrea, M; Oke, G; Alacakir, A; Demir, A; Loureiro, J (IOP Publishing, 2005-08-21)
The construction of a double discharge pulsed electron beam generator and the study of the characteristics of the beam are presented in this paper. The electron beam generator consists of a fast filamentary discharge in superposition with an ordinary glow discharge in low-pressure gases. The filling gas is argon or helium at approximately 0.1 Torr pressure. The duration of the electron beam is shorter than 50 ns and the peak current intensity is of the order of amperes. The electron density is evaluated by ...
Spatial stabilization of Townsend and glow discharges with a semiconducting cathode
Salamov, BG; Ellialtioglu, S; Akınoğlu, Bülent Gültekin; Lebedeva, NN; Patriskii, LG (IOP Publishing, 1996-03-14)
The physical processes determining the functions of an ionization system and especially the discharge stabilization by the distributed resistance of a semiconducting cathode in such a system are studied. The current-voltage (I-U) characteristics of the system with a semiconducting GaAs cathode are obtained experimentally as functions of the gap pressure P (16-760 Torr) and inter-electrode distance d (10 mu m to 5 mm), which are varied for the first time over very wide ranges. The experiments showed that the...
Radiative gas-dynamic model of a continuous optical discharge in a gravitational field: quasi-optical approximation
Rafatov, İsmail (IOP Publishing, 2009-08-07)
We consider a continuous optical discharge (COD) sustained by a vertically directed weakly focused CO(2) laser beam, in a gravitational field. We used a full two-dimensional radiative gas-dynamic numerical model for the COD, which uses realistic quasi optics and takes refraction of the laser radiation in the plasma properly into account in the description of the laser beam propagation. The model is applied to calculate the parameters of the COD in a converging CO(2) laser beam in free air atmosphere as a fu...
Electrical, photo-electrical, optical and structural properties of CdSe thin films deposited by thermal and e-beam techniques
Hus, S. M.; Parlak, Mehmet (IOP Publishing, 2008-02-07)
In this study, electrical, photo-electrical, optical and structural analyses of CdSe thin films deposited by thermal and e-beam evaporation techniques were carried out by measuring temperature dependent conductivity, mobility, photoconductivity under different illumination intensity, photoresponse, transmission and x-ray diffraction. As a result of these measurements, it was observed that the films deposited by the thermal evaporation technique have room temperature conductivity values approximately three o...
Citation Formats
İ. Rafatov, “Self-consistent model of thermal and ionization non-equilibrium spherical microwave discharge,” JOURNAL OF PHYSICS D-APPLIED PHYSICS, pp. 2227–2236, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37156.