Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Contribution of nanoclays to the flame retardancy of polyethylene-based cable insulation materials with aluminum hydroxide and zinc borate
Date
2014-03-01
Author
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
432
views
0
downloads
Cite This
The main aim of this study was to investigate contribution of nanoclays to the flame retardancy of two cable insulation materials: low-density polyethylene and its blend with ethylene vinyl acetate. For this purpose, nanoclays were first incorporated alone, then together with traditional flame-retardant aluminum hydroxide, and then together with aluminum hydroxide-zinc borate system. Compounds and nanocomposites were prepared by melt mixing method with a twin-screw extruder, while specimens were shaped by compression and injection molding. X-ray diffraction analysis and transmission electron microscopy revealed that nanoclay silicate layers were mainly intercalated with certain level of exfoliation in both matrices. Limiting oxygen index, UL-94 vertical burning, and mass loss cone calorimeter analyses indicated that for both matrix materials even use of nanoclays alone could improve many flammability parameters including peak heat release rate, time to ignition, and fire growth index. Contributions of nanoclays were much more significant when they were incorporated together with traditional aluminum hydroxide or together with aluminum hydroxide-zinc borate system. Residue analysis revealed that contribution of nanoclays to the flame retardancy mechanisms of aluminum hydroxide and zinc borate was mainly by formation of strong and tough char structure via well-dispersed and intercalated/exfoliated silicate layers shielding the underlying polymer matrices from heat and mass transfer.
Subject Keywords
Mechanical Engineering
,
Mechanics of Materials
,
Safety, Risk, Reliability and Quality
URI
https://hdl.handle.net/11511/37358
Journal
JOURNAL OF FIRE SCIENCES
DOI
https://doi.org/10.1177/0734904113500129
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Effects of nanoclays on the flammability of polystyrene with triphenyl phosphate-based flame retardants
Kaynak, Cevdet (SAGE Publications, 2013-07-01)
The main purpose of this study is to investigate the effects of nanoclays on the flammability behavior of neat polystyrene and polystyrene compounded with traditional flame retardants triphenyl phosphate and its synergist melamine cyanurate. Nanocomposites were prepared via ultrasound-assisted solution intercalation technique. Dispersion and nanomorphology of nanoclays were investigated through X-ray diffraction analysis and transmission electron microscopy. Thermal stability and flammability behaviors were...
Halogen-free Flame Retardants that Outperform Halogenated Counterparts in Glass Fiber Reinforced Polyamides
Isitman, Nihat Ali; GÜNDÜZ, Huseyin Ozgur; Kaynak, Cevdet (SAGE Publications, 2010-01-01)
Flammability, fire performance, and thermal stability of short glass fiber reinforced polyamide-6 and polyamide-66 containing halogenated and halogen-free flame retardants (FRs) were compared. Flammabilities were assessed by limiting oxygen index tests and UL94 classifications. Fire behavior was evaluated by mass loss cone calorimetry, a bench-scale tool, to assess fire performance of materials. Halogen-free, phosphorus-based FRs were shown to perform superior to halogenated counterparts on the basis of imp...
Usability of three boron compounds for enhancement of flame retardancy in polyethylene-based cable insulation materials
İBİBİKCAN, Esin; Kaynak, Cevdet (SAGE Publications, 2014-03-01)
It is known that for the production of halogen-free cable insulation materials based on polyethylene, very high amounts of traditional metal hydroxide flame retardants such as 65 wt% aluminum hydroxide are required to fulfill international directives. In this respect, the aim of this study was to reveal possible enhancement effects of three boron compounds on the flame retardancy of two cable insulation materials: low-density polyethylene and its blend with ethylene vinyl acetate both loaded with aluminum h...
Effect of carbon fiber amount and length on flame retardant and mechanical properties of intumescent polypropylene composites
ATABEK SAVAŞ, Lemiye; Mutlu, Aysenur; Dike, Ali Sinan; Tayfun, Umit; DOĞAN, Mehmet (SAGE Publications, 2018-02-01)
The effects of carbon fiber amount and length were studied on the flame retardant, thermal, and mechanical properties of the intumescent polypropylene composites. The flame retardant properties of the intumescent polypropylene-based composites were investigated using limiting oxygen index, vertical burning test (UL-94), and mass loss calorimeter. The mechanical properties of the composites were studied using tensile test and dynamic mechanical analysis. According to the flammability tests results, the antag...
Contribution of carbon nanotubes to vibration damping behavior of epoxy and its carbon fiber composites
Avil, Esma; Kadioglu, Ferhat; Kaynak, Cevdet (SAGE Publications, 2020-04-01)
The main objective of this study was to investigate contribution of the non-functionalized multi-walled carbon nanotubes on the vibration damping behavior of first neat epoxy resin and then unidirectional and bidirectional continuous carbon fiber reinforced epoxy matrix composites. Epoxy/carbon nanotubes nanocomposites were produced by ultrasonic solution mixing method, while the continuous carbon fiber reinforced composite laminates were obtained via resin-infusion technique. Vibration analysis data of the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Kaynak, “Contribution of nanoclays to the flame retardancy of polyethylene-based cable insulation materials with aluminum hydroxide and zinc borate,”
JOURNAL OF FIRE SCIENCES
, pp. 121–144, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37358.