Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effects of nanoclays on the flammability of polystyrene with triphenyl phosphate-based flame retardants
Date
2013-07-01
Author
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
250
views
0
downloads
Cite This
The main purpose of this study is to investigate the effects of nanoclays on the flammability behavior of neat polystyrene and polystyrene compounded with traditional flame retardants triphenyl phosphate and its synergist melamine cyanurate. Nanocomposites were prepared via ultrasound-assisted solution intercalation technique. Dispersion and nanomorphology of nanoclays were investigated through X-ray diffraction analysis and transmission electron microscopy. Thermal stability and flammability behaviors were evaluated by thermogravimetric analysis, limiting oxygen index, and mass loss calorimeter tests. These analyses indicated that addition of only 5% nanoclays resulted in significant improvements in many flame retardancy parameters of polystyrene. These improvements were more pronounced in the specimens with triphenyl phosphate and triphenyl phosphate-melamine cyanurate due to the synergistic combination of condensed phase action of nanoclays and gas phase actions of triphenyl phosphate and melamine cyanurate.
Subject Keywords
Mechanical Engineering
,
Mechanics of Materials
,
Safety, Risk, Reliability and Quality
URI
https://hdl.handle.net/11511/37419
Journal
JOURNAL OF FIRE SCIENCES
DOI
https://doi.org/10.1177/0734904112473729
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Contribution of nanoclays to the flame retardancy of polyethylene-based cable insulation materials with aluminum hydroxide and zinc borate
Kaynak, Cevdet (SAGE Publications, 2014-03-01)
The main aim of this study was to investigate contribution of nanoclays to the flame retardancy of two cable insulation materials: low-density polyethylene and its blend with ethylene vinyl acetate. For this purpose, nanoclays were first incorporated alone, then together with traditional flame-retardant aluminum hydroxide, and then together with aluminum hydroxide-zinc borate system. Compounds and nanocomposites were prepared by melt mixing method with a twin-screw extruder, while specimens were shaped by c...
A New Method for Prediction of the Transient Force Generated by a Liquid Slug Impact on an Elbow of an Initially Voided Line
KAYHAN, Bulent A.; Bozkuş, Zafer (ASME International, 2011-04-01)
The aim of the present study is to predict the impact force applied by an individual transient liquid slug on an elbow at the end of a horizontal and initially empty pipeline. The liquid slug is driven by pressurized air in a tank located upstream of the pipeline. The time dependent pressure distribution along the elbow and a vertical extension segment after the elbow are solved with a 1D numerical approach along a curved line mesh. An assumed and calibrated axial turbulent velocity profile function with 3D...
Effect of carbon nanotube surface treatment on the morphology, electrical, and mechanical properties of the microfiber-reinforced polyethylene/poly(ethylene terephthalate)/carbon nanotube composites
Yesil, Sertan; Bayram, Göknur (2013-01-15)
The aim of this study is to investigate the effects of carbon nanotube (CNT) chemical properties, CNT content, and molding temperature on the morphology, electrical, and mechanical properties of the microfiber-reinforced polymer composites. These composites were prepared by extrusion and hot stretching the poly(ethylene terephthalate) (PET)/CNT phase in high density polyethylene (HDPE) matrix. Surfaces of the CNT were modified by purification with strong acid mixture (HNO3 : H2SO4 mixture 1 : 1 by volume) f...
Effect of High Hydrostatic Pressure Treatment (HHPT) on Quality and Shelf Life of Atlantic Mackerel (Scomber scombrus)
ŞENTÜRK, Tugce; Alpas, Hami (Springer Science and Business Media LLC, 2013-09-01)
The ability of high hydrostatic pressure treatment (HHPT) to extend the shelf life of Atlantic mackerel (Scomber scombrus) was assessed in this study. For that purpose, fillets were subjected to pressure treatments at 200, 300, 400 MPa at 5, 10, 15 A degrees C for 5 and 15 min. The influence of pressure treatments on the levels of trimethylamine nitrogen (TMA-N) and thiobarbituric acid (TBA) as well as color changes was investigated. The suitable combinations were determined as 200 MPa, 15 A degrees C for 5...
Influences of three different ethylene copolymers on the toughness and other properties of polylactide
MEYVA, YELDA; Kaynak, Cevdet (Informa UK Limited, 2016-01-01)
The aim of this study was to investigate influences of three different ethylene copolymers on the toughness and other properties of very brittle biopolymer PLA (polylactide). For this aim, PLA was melt blended by twin-screw extruder with various amounts of ethylene vinyl acetate (EVA), ethylene-methyl-acrylate (EMA) and ethylene-n-butyl acrylate-glycidyl-methacrylate (EBA-GMA). SEM and DSC analyses indicated that these ethylene copolymers were thermodynamically immiscible with phase separation in the form o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Kaynak, “Effects of nanoclays on the flammability of polystyrene with triphenyl phosphate-based flame retardants,”
JOURNAL OF FIRE SCIENCES
, pp. 339–355, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37419.