Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fully Depleted InP Nano-Layer for In-Device Passivation of InGaAs SWIR Detectors
Date
2017-12-01
Author
Dolas, M. Halit
Kocaman, Serdar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
We designed a p-n InGaAs/InP heterojunction photodiode with a novel passivation approach that employs a thin and fully depleted in-device (embedded in the p-n structure) p-InP layer. We comparatively characterized mesa-type detector pixels and experimentally observed expected passivating behavior. Characterization results under illumination indicated that fully depleted p-InP layer increases photo-current as well due to increasing device active area. Dark current analysis of detector pixels with different areas resulted in a suppression of surface dark current by nearly three times.
Subject Keywords
Fully depleted
,
SWIR
,
InP passivation
,
p-n diodes
,
In-device passivation
,
InGaAs
,
heterojunction
URI
https://hdl.handle.net/11511/37379
Journal
IEEE ELECTRON DEVICE LETTERS
DOI
https://doi.org/10.1109/led.2017.2763616
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Optimization of Mesa Structured InGaAs Based Photodiode Arrays
Dolas, M. Halit; Çırçır, Kübra; Kocaman, Serdar (2017-04-13)
We design lattice matched InP/In0.53Ga0.47As mesa structured heterojunction p-n photodiodes with a novel passivation methodology based on a fully depleted thin p-InP layer. Mesa-structured detectors are targeted due to their competitive advantages for applications such as multicolor/hyperspectral imaging. Test detector pixels with different perimeter/area ratios are fabricated with and without etching thin InP passivation layer between pixels in order to comparatively examine passivating behavior. I-V chara...
Dark current optimization designs for mesa and planar type processed short wavelength infrared photodetectors
Dolaş, Muhammet Halit; Bek, Alpan; Arslan, Yetkin; Department of Micro and Nanotechnology (2021-3-05)
This thesis aims to report novel designs to achieve lower dark current values for modified pin heterojunction InGaAs/InP SWIR photodiodes for both mesa and planar type production methodologies.Mesa type studies covernovel passivation methodology based on a fully depleted thin p-InP layer. Mesastructured detectors are targeted due to their competitive advantages for applications such as multicolor/hyperspectral imaging. Test detector pixels with different p...
Compressive Sensing Imaging with a Graphene Modulator at THz Frequency in Transmission Mode
Özkan, Vedat Ali; Takan, Taylan; Kakenov, N.; KOCABAŞ, COŞKUN; Altan, Hakan (2016-09-30)
In this study we demonstrate compressive sensing imaging with a unique graphene based optoelectronic device which allows us to modulate the THz field through an array of columns or rows distributed throughout its face.
A dielectrophoretic cell/particle separator fabricated by spiral channels and concentric gold electrodes
Yilmaz, G.; Çiftlik, A.T.; Külah, Haluk (2009-12-14)
This paper presents the design and implementation of a novel dielectrophoresis (DEP) system with spiral channels and concentric electrodes for high resolution cell separation applications. The device is fabricated with a 4 mask parylene process and the design is optimized in MATLAB Simulink reg to confine the operation. Tests with micro particles of different sizes are performed to show size-based separation by dielectrophoresis. Proposed device is also tested with K562 leukemia cell lines to prove that the...
Highly Sensitive and Tunable Fano-like Rod-Type Silicon Photonic Crystal Refractive Index Sensor
Kılıç, Selahattin Cem; Kocaman, Serdar (2021-01-01)
IEEEA highly sensitive and tunable 2D rod-type silicon photonic crystal cavity based biosensor configuration has been designed and numerically analyzed. The structure is optimized so that the light-matter interaction is maximized in the cavity region. Out-of-plane light confinement is achieved by sandwiching the rods between metal plates, and tuning is achieved by introducing an air-gap between on top of the rods and the metal plate. A single rod is positioned in the middle of the waveguide so that the cavi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. H. Dolas and S. Kocaman, “Fully Depleted InP Nano-Layer for In-Device Passivation of InGaAs SWIR Detectors,”
IEEE ELECTRON DEVICE LETTERS
, pp. 1692–1695, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37379.