Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Time series AR(1) model for short-tailed distributions
Date
2005-04-01
Author
Akkaya, AD
Tiku, ML
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
185
views
0
downloads
Cite This
The innovations in AR(1) models in time series have primarily been assumed to have a normal or long-tailed distributions. We consider short-tailed distributions (kurtosis less than 3) and derive modified maximum likelihood (MML) estimators. We show that the MML estimator of 0 is considerably more efficient than the commonly used least squares estimator and is also robust. This paper is essentially the first to achieve robustness to inliers and to various forms of short-tailedness in time series analysis.
Subject Keywords
Statistics, Probability and Uncertainty
,
Statistics and Probability
URI
https://hdl.handle.net/11511/64932
Journal
STATISTICS
DOI
https://doi.org/10.1080/02331880500031407
Collections
Department of Statistics, Article
Suggestions
OpenMETU
Core
Mutual information model selection algorithm for time series
Akca, Elif; Yozgatlıgil, Ceylan (Informa UK Limited, 2020-09-01)
Time series model selection has been widely studied in recent years. It is of importance to select the best model among candidate models proposed for a series in terms of explaining the procedure that governs the series and providing the most accurate forecast for the future observations. In this study, it is aimed to create an algorithm for order selection in Box-Jenkins models that combines penalized natural logarithm of mutual information among the original series and predictions coming from each candida...
Multiple linear regression model with stochastic design variables
İslam, Muhammed Qamarul (Informa UK Limited, 2010-01-01)
In a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is given.
Regression analysis with a dtochastic design variable
Sazak, HS; Tiku, ML; İslam, Muhammed Qamarul (Wiley, 2006-04-01)
In regression models, the design variable has primarily been treated as a nonstochastic variable. In numerous situations, however, the design variable is stochastic. The estimation and hypothesis testing problems in such situations are considered. Real life examples are given.
Marginalized transition random effect models for multivariate longitudinal binary data
İlk Dağ, Özlem (Wiley, 2007-03-01)
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, the computation and interpretation of marginal covariate effects can be difficult. This led Heagerty (1999, 2002) to propose models for longitudinal binary data in which a logistic regression is first used to explain the average marginal response. The model is then completed by introducing a conditional regression that allows for the longitudinal, within-subject, dependence, either...
Estimation and hypothesis testing in multivariate linear regression models under non normality
İslam, Muhammed Qamarul (Informa UK Limited, 2017-01-01)
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modifie...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Akkaya and M. Tiku, “Time series AR(1) model for short-tailed distributions,”
STATISTICS
, pp. 117–132, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64932.