Time series AR(1) model for short-tailed distributions

Akkaya, AD
Tiku, ML
The innovations in AR(1) models in time series have primarily been assumed to have a normal or long-tailed distributions. We consider short-tailed distributions (kurtosis less than 3) and derive modified maximum likelihood (MML) estimators. We show that the MML estimator of 0 is considerably more efficient than the commonly used least squares estimator and is also robust. This paper is essentially the first to achieve robustness to inliers and to various forms of short-tailedness in time series analysis.


Mutual information model selection algorithm for time series
Akca, Elif; Yozgatlıgil, Ceylan (Informa UK Limited, 2020-09-01)
Time series model selection has been widely studied in recent years. It is of importance to select the best model among candidate models proposed for a series in terms of explaining the procedure that governs the series and providing the most accurate forecast for the future observations. In this study, it is aimed to create an algorithm for order selection in Box-Jenkins models that combines penalized natural logarithm of mutual information among the original series and predictions coming from each candida...
Multiple linear regression model with stochastic design variables
İslam, Muhammed Qamarul (Informa UK Limited, 2010-01-01)
In a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is given.
Regression analysis with a dtochastic design variable
Sazak, HS; Tiku, ML; İslam, Muhammed Qamarul (Wiley, 2006-04-01)
In regression models, the design variable has primarily been treated as a nonstochastic variable. In numerous situations, however, the design variable is stochastic. The estimation and hypothesis testing problems in such situations are considered. Real life examples are given.
Marginalized transition random effect models for multivariate longitudinal binary data
İlk Dağ, Özlem (Wiley, 2007-03-01)
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, the computation and interpretation of marginal covariate effects can be difficult. This led Heagerty (1999, 2002) to propose models for longitudinal binary data in which a logistic regression is first used to explain the average marginal response. The model is then completed by introducing a conditional regression that allows for the longitudinal, within-subject, dependence, either...
Estimation and hypothesis testing in multivariate linear regression models under non normality
İslam, Muhammed Qamarul (Informa UK Limited, 2017-01-01)
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modifie...
Citation Formats
A. Akkaya and M. Tiku, “Time series AR(1) model for short-tailed distributions,” STATISTICS, pp. 117–132, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64932.