Computational modeling of chemo-electro-mechanical coupling: A novel implicit monolithic finite element approach

2013-10-01
Wong, J.
Göktepe, Serdar
Kuhl, E.
Computational modeling of the human heart allows us to predict how chemical, electrical, and mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac disease has advanced significantly over the past decades, yet it remains unclear how the local biochemistry of an individual heart cell translates into global cardiac function. Here, we propose a novel, unified strategy to simulate excitable biological systems across three biological scales. To discretize the governing chemical, electrical, and mechanical equations in space, we propose a monolithic finite element scheme. We apply a highly efficient and inherently modular global-local split, in which the deformation and the transmembrane potential are introduced globally as nodal degrees of freedom, whereas the chemical state variables are treated locally as internal variables. To ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference scheme to discretize the resulting system in time. To increase algorithmic robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and stable, with calculation times on the order of 4days on a standard desktop computer. Copyright (c) 2013 John Wiley & Sons, Ltd.
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING

Suggestions

Computational modeling of electrocardiograms: A finite element approach toward cardiac excitation
Kotikanyadanam, Mohan; Göktepe, Serdar; Kuhl, Ellen (Wiley, 2010-05-01)
The objective of this work is the computational simulation of a patient-specific electrocardiogram (EKG) using a novel, robust, efficient, and modular finite element-based simulation tool for cardiac electrophysiology. We apply a two-variable approach in terms of a fast action potential and a slow recovery variable, whereby the latter phenomenologically summarizes the concentration of ionic currents. The underlying algorithm is based on a staggered solution scheme in which the action potential is introduced...
Computational modeling of passive myocardium
Göktepe, Serdar; Wong, Jonathan; Kuhl, Ellen (Wiley, 2011-01-01)
This work deals with the computational modeling of passive myocardial tissue within the framework ofmixed, non-linear finite element methods. We consider a recently proposed, convex, anisotropic hyperelastic model that accounts for the locally orthotropic micro-structure of cardiac muscle. A coordinate-free representation of anisotropy is incorporated through physically relevant invariants of the Cauchy-Green deformation tensors and structural tensors of the corresponding material symmetry group. This model...
Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions
Berberoglu, Ezgi; Solmaz, H. Onur; Göktepe, Serdar (Elsevier BV, 2014-11-01)
Computational models have huge potential to improve our understanding of the coupled biological, electrical, and mechanical underpinning mechanisms of cardiac function and diseases. This contribution is concerned with the computational modeling of different cardiac dysfunctions related to the excitation-contraction coupling in the heart. To this end, the coupled problem of cardiac electromechanics is formulated through the conservation of linear momentum equation and the excitation equation formulated in th...
Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework
ÖZDEMİR, İZZET; Yalçınkaya, Tuncay (Springer Science and Business Media LLC, 2014-08-01)
This paper focuses on the continuum scale modeling of dislocation-grain boundary interactions and enriches a particular strain gradient crystal plasticity formulation (convex counter-part of Yal double dagger inkaya et al., J Mech Phys Solids 59:1-17, 2011; Int J Solids Struct 49:2625-2636, 2012) by incorporating explicitly the effect of grain boundaries on the plastic slip evolution. Within the framework of continuum thermodynamics, a consistent extension of the model is presented and a potential type non-...
Numerical simulation of solidification kinetics in A356/SiCp composites for assessment of as-cast particle distribution
CETIN, Arda; Kalkanlı, Ali (Elsevier BV, 2009-06-01)
The present work is aimed at studying the effect of solidification rate on reinforcement clustering in particle reinforced metal matrix composites (PMMCs) through numerical simulations and experimental studies. A macrotransport-solidification kinetics (MTSK) model was used to simulate the solidification kinetics of the PMMCs. The experimental validation of the numerical model was achieved through the Newtonian and Fourier thermal analysis methods. Results reveal that the MTSK model can be successfully used ...
Citation Formats
J. Wong, S. Göktepe, and E. Kuhl, “Computational modeling of chemo-electro-mechanical coupling: A novel implicit monolithic finite element approach,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, pp. 1104–1133, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37539.