Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Computational modeling of electrocardiograms: A finite element approach toward cardiac excitation
Date
2010-05-01
Author
Kotikanyadanam, Mohan
Göktepe, Serdar
Kuhl, Ellen
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
The objective of this work is the computational simulation of a patient-specific electrocardiogram (EKG) using a novel, robust, efficient, and modular finite element-based simulation tool for cardiac electrophysiology. We apply a two-variable approach in terms of a fast action potential and a slow recovery variable, whereby the latter phenomenologically summarizes the concentration of ionic currents. The underlying algorithm is based on a staggered solution scheme in which the action potential is introduced globally as nodal degree of freedom, while the recovery variable is treated locally as internal variable on the integration point level. We introduce an unconditionally stable implicit backward Euler scheme to integrate the evolution equations for both variables in time, and an incremental iterative Newton-Raphson scheme to solve the resulting nonlinear system of equations. In a straightforward post-processing step, we calculate the flux of the action potential and integrate it over the entire domain to obtain the heart vector. The projection of the heart vector onto six pre-defined directions in space defines a six-lead EKG. We illustrate its generation in terms of a magnetic resonance-based patient-specific heart geometry and discuss the clinical implications of the computational electrocardiography. Copyright (C) 2009 John Wiley & Sons, Ltd.
Subject Keywords
Modelling and Simulation
,
Computational Theory and Mathematics
,
Software
,
Applied Mathematics
,
Molecular Biology
,
Biomedical Engineering
URI
https://hdl.handle.net/11511/37318
Journal
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING
DOI
https://doi.org/10.1002/cnm.1273
Collections
Department of Civil Engineering, Article