Simultaneous novel synthesis of conducting, nonconducting, and crosslinked polymers by microwave initiation

2006-12-15
Çelik, Güler
Kisakurek, Duygu
A novel synthesis of poly(dibromophenylene oxide) (P), conducting polymer (CP), and/or crosslinked polymer (CLP), and/or radical ion polymers (RIP) was achieved simultaneously from sodium 2,4,6-tribromophenolate by microwave energy in a very short-time interval. The synthesized polymers were characterized via elemental analysis, FTIR, H-1 NMR and C-13 NMR, X-ray diffraction spectroscopy, SEM, DSC, TGA, ESR, GPC, conductivity measurement, and light scattering. It was found that polymerization proceeds through both 1,2- and 1,4-addition at equal rates. The effects of the energy and time on the % conversion and the polymer synthesis were investigated. The optimum condition for synthesis of P (the highest M-wr 2.97 x 10(5) g/mol) and CP was 70 W for 5 min in 5 ml, water and 100 W for 1 min in 0.5 mL water, having maximum values 23.6% and 27.2%, respectively. In addition, synthesis of CLP and RIP were achieved in 5 mL water at 350 W and 700 W at the end of 1 min, respectively. The direct synthesis of highly conducting polymer, with the conductivity of 1 S cm(-2) was achieved in the absence of applied doping process in a very short time sequence. P, CP, CLP, and RIP had fine granular, sponge-like, dendrite, and coarse surface structures, respectively. (c) 2006 Wiley Periodicals, Inc.
Citation Formats
G. Çelik and D. Kisakurek, “Simultaneous novel synthesis of conducting, nonconducting, and crosslinked polymers by microwave initiation,” pp. 5427–5435, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37607.