Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants

2000-07-18
Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were used to investigate the thermal behavior of glycidyl azide polymer (GAP) and GAP-based binders, which are of potential interest for the development of high-performance energetic propellants. The glass transition temperature (T-g) and decomposition temperature (T-d) of pure GAP were found to be -45 and 242 degrees C, respectively. The energy released during decomposition (Delta H-d) was measured as 485 cal/g. The effect of the heating rate on these properties was also investigated. Then, to decrease its T-g, GAP was mixed with the plasticizers dioctiladipate (DOA) and bis-2,2-dinitropropyl acetal formal (BDNPA/F). The thermal characterization results showed that BDNPA/F is a suitable plasticiser for GAP-based propellants. Later, GAP was crosslinked by using the curing agent triisocyanate N-100 and a curing catalyst dibuthyltin dilaurate (DBTDL). The thermal characterization showed that crosslinking increases the T-g and decreases the T-d of GAP. The T-g of cured GAP was decreased to sufficiently low temperatures (-45 degrees C) by using BDNPA/F. The decomposition reaction-rate constants were calculated. It can be concluded that the binder developed by using GAP/N-100/BDNPA/F/DBTDL may meet the requirements of the properties that makes it useful for future propellant formulations. (C) 2000 John Wiley & Sons, Inc.

Suggestions

Thermal stability and decomposition mechanism of poly(p-acryloyloxybenzoic acid and poly(p-methacryloyloxybenzoic acid) and their graft copolymers with polypropylene, Part II
Cetin, S.; Tincer, T. (Wiley, 2008-04-05)
Thermal stability and decomposition mechanism of poly(p-acryloyloxybenzoic) acid (PABA), p-methacryloyloxybenzoic acid (PMBA), and their graft coproducts of PP were studied by differential scanning calorimetry, direct pyrolysis mass spectrometry, and TG/IR system, combined thermogravimetric analyzer, and FTIR spectrometer. The homopolymers and corresponding grafts were found to be stable in nitrogen atmosphere but started to decompose under atmospheric conditions when heated above 230 degrees C. PABA and PA...
Thermal and dynamic mechanical properties of microwave and heat-cured poly(methyl methacrylate) used as dental base material
Muhtarogullari, IY; Dogan, A; Muhtarogullari, M; Usanmaz, Ali (Wiley, 1999-12-13)
In this study, the particle size distribution, molecular weight, thermal analysis (TGA) differential scanning calorimetry (DSC) and thermogravimetric analysis, and dynamic mechanical analysis (DMA) of poly(methyl methacrylate) used as dental base material were investigated. The commercial raw material used were prepared for microwave curing, and they were cured by microwave and conventional heat methods. The average particle size of the powder studied (103.1 mu m) were much larger than that of the commercia...
Indium tin oxide nanoparticles as anode for light-emitting diodes
Çırpan, Ali (Wiley, 2006-02-15)
Thin films of indium tin oxide (ITO) nanoparticles have been investigated as anode materials for polymer light-emitting diodes. A luminance efficiency (0.13 cd/ A), higher than that (0.09 cd/A) obtained in a control devices fabricated on conventional commercial ITO anodes were found. The thin films were made by spin coating of a suspension followed by annealing. The ITO nartoparticle films have a stable sheet resistance of 200 ohm/sq, and an optical transmittance greater than 86% over the range of 400-1000 ...
Kinetic study of the reaction between hydroxyl-terminated polybutadiene and isophorone diisocyanate in bulk by quantitative FTIR spectroscopy
Kincal, D; Özkar, Saim (Wiley, 1997-12-05)
A kinetic study of the reaction between a hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI) was carried out in the bulk state by using quantitative Fourier transform infrared(FTIR) spectroscopy. The reaction is shown to obey a second-order rate law, being first order in both the HTPB and IPDI concentrations. The activation parameters obtained from the evaluation of kinetic data are Delta H-double dagger = 41.1 +/- 0.4 kJ mol, Delta S-double dagger = -198 +/- 2 J K-1 mol(-1) and E-a...
Kinetics of polyurethane formation between glycidyl azide polymer and a triisocyanate
Keskin, S; Özkar, Saim (Wiley, 2001-07-25)
Kinetics of the polyurethane formation between glycidyl azide polymer (GAP) and a polyisocyanate, Desmodur N-100, were studied in the bulk state by using quantitative FTIR spectroscopy. The reaction was followed by monitoring the change in intensity of the absorption band at 2270 cm-l for NCO stretching in the IR spectrum, and was shown to obey second-order kinetics up to 50% conversion. The activation parameters were obtained from the evaluation of kinetic data at different temperatures in the range of 50-...
Citation Formats
K. Selim, S. Özkar, and L. Yılmaz, “Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants,” JOURNAL OF APPLIED POLYMER SCIENCE, pp. 538–546, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34522.