Integration of a Glutamate Sensitive Genetically Encoded Sensor Protein into Photocrosslinkable Hydrogel Optrodes

Immobilization into 3D matrices stabilizes proteins in comparison to flat planar surfaces and facilitates the study of the biomolecular interactions as well as integration into optrodes for cell physiology. Photocrosslinkable hydrogels have received significant attention in recent years as they provide not only a highly hydrophilic 3D environment to promote protein stabilization and its interactions with analyte molecules, but enable optically addressable patterning for spatial control of protein localization. At the same time, the explosion of new genetically encoded sensor proteins has greatly expanded the range of optical molecular sensors for cell physiology. Here we integrate a genetically encoded glutamate sensor protein into a photocrosslinkable hydrogel via covalent interaction to create a novel glutamate sensor material. Protein immobilization can be achieved through covalent bonds, physical interactions, or physical entrapment. Although physical entrapment without chemical modifications offers a universal approach for protein immobilization, leaching of protein through the pores of the hydrogel is a significant challenge. Thus, here an alternative method is developed to provide better control of protein localization and immobilization using naturally existing reactive groups of proteins. To this end, a genetically encoded FRET based glutamate indicator protein (FLIPE) is modified with diacrylated poly (ethylene glycol) (PEGDA) by Michael-type addition between acrylate groups and the thiol side chains of the cysteine residues. We optimize the molecular weight of PEGDA (300, 740, and 3400 Da) as well as concentrations of the photoinitiator (0.1, 0.5 and 1 % (w/w)) and monomer (10, 20, and 30 % (w/w)) in the precursor solution. Next the precursor solution is grown at the distal end of an optical fiber to test the spectroscopic properties and characteristic bioactivities of proteins in the hydrogel network. Optimization of the irradiation parameters, light intensity and exposure time, improves the spatial resolution of 3D hydrogel tips. This study examines the capability of fabricating 3D hydrogel sensors covalently modified with a member of recently growing genetically encoded fluorescent biosensors, which can later be extended to all conformation-dependent protein biosensors and be used intracellularly for physiological and biological sensing purposes.


Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Computational study of subsonic flow over a delta canard-wing-body configuration
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1998-07-01)
Subsonic flowfields over a close-coupled, delta canard-wing-body configuration at angles of attack of 20, 24,2, and 30 deg are computed using the OVERFLOW Navier-Stokes solver Computed flowfields are presented in terms of particle traces, surface streamlines, and leeward-side surface pressure distributions for the canard-on and -off configurations. The interaction between the canard and the wing vortices, wing vortex breakdown, and the influence of the canard on vortex breakdown are identified, The comparis...
Applications of the multifunctional magnetic nanoparticles for development of molecular therapies for breast cancer
Aşık, Elif; Güray, Tülin; Volkan, Mürvet; Department of Biotechnology (2015)
The understanding of how magnetic nanoparticles (MNPs) interact with living system is one of the prerequisite pieces of information needed to be obtained before any further development for desired biomedical applications. In this study, Cobalt Ferrite magnetic nanoparticles (CoFe-MNPs) in their naked and silica-coated forms were characterized. In vitro cell culture for their likely cytotoxicity and genotoxicity potential were examined. The apoptosis, lipid peroxidation, ROS formation and oxidative stress re...
Preparation and thermal characterization of poly(2-vinylpyridine) copolymers coordinated to Cr nanoparticles
Öztürk, Yurdagül; Kayran, Ceyhan; Hacaloğlu, Jale (2015-06-01)
In this study, polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, polyisoprene-block-poly(2-vinylpyridne), PI-b-P2VP and poly(methyl metacrylate)-block-poly(2-vinylpyridine), PMMA-b-P2VP, coordinated to Cr metal were synthesized and characterized by Fourier transform infrared, transmission electron microscopy and direct pyrolysis mass spectrometry techniques. Both thermal degradation mechanism and thermal stability of P2VP blocks were affected by the coordination of Cr nanoparticles to nitrogen of pyridine...
Assessment of an iterative approach for solution of frequency domain linearized euler equations for noise propagation through turbofan jet flows
Dizemen, İlke Evrim; Yörükoğlu, Yusuf; Department of Aerospace Engineering (2007)
This study, explores the use of an iterative solution approach for the linearized Euler equations formulated in the frequency domain for fan tone noise propagation and radiation through bypass jets. The aim is to be able to simulate high frequency propagation and radiation phenomena with this code, without excessive computational resources. All computations are performed in parallel using MPI library routines on a computer cluster. The linearized Euler equations support the Kelvin-Helmholtz type convective ...
Citation Formats
L. N. Kahyaoğlu, “Integration of a Glutamate Sensitive Genetically Encoded Sensor Protein into Photocrosslinkable Hydrogel Optrodes,” MRS ADVANCES, pp. 539–546, 2016, Accessed: 00, 2020. [Online]. Available: