Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Integration of a Glutamate Sensitive Genetically Encoded Sensor Protein into Photocrosslinkable Hydrogel Optrodes
Date
2016-01-01
Author
Kahyaoğlu, Leyla Nesrin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
Immobilization into 3D matrices stabilizes proteins in comparison to flat planar surfaces and facilitates the study of the biomolecular interactions as well as integration into optrodes for cell physiology. Photocrosslinkable hydrogels have received significant attention in recent years as they provide not only a highly hydrophilic 3D environment to promote protein stabilization and its interactions with analyte molecules, but enable optically addressable patterning for spatial control of protein localization. At the same time, the explosion of new genetically encoded sensor proteins has greatly expanded the range of optical molecular sensors for cell physiology. Here we integrate a genetically encoded glutamate sensor protein into a photocrosslinkable hydrogel via covalent interaction to create a novel glutamate sensor material. Protein immobilization can be achieved through covalent bonds, physical interactions, or physical entrapment. Although physical entrapment without chemical modifications offers a universal approach for protein immobilization, leaching of protein through the pores of the hydrogel is a significant challenge. Thus, here an alternative method is developed to provide better control of protein localization and immobilization using naturally existing reactive groups of proteins. To this end, a genetically encoded FRET based glutamate indicator protein (FLIPE) is modified with diacrylated poly (ethylene glycol) (PEGDA) by Michael-type addition between acrylate groups and the thiol side chains of the cysteine residues. We optimize the molecular weight of PEGDA (300, 740, and 3400 Da) as well as concentrations of the photoinitiator (0.1, 0.5 and 1 % (w/w)) and monomer (10, 20, and 30 % (w/w)) in the precursor solution. Next the precursor solution is grown at the distal end of an optical fiber to test the spectroscopic properties and characteristic bioactivities of proteins in the hydrogel network. Optimization of the irradiation parameters, light intensity and exposure time, improves the spatial resolution of 3D hydrogel tips. This study examines the capability of fabricating 3D hydrogel sensors covalently modified with a member of recently growing genetically encoded fluorescent biosensors, which can later be extended to all conformation-dependent protein biosensors and be used intracellularly for physiological and biological sensing purposes.
Subject Keywords
Fret sensores
,
Metabolites
,
Fret sensors
,
Metabolites
URI
https://hdl.handle.net/11511/37760
Journal
MRS ADVANCES
DOI
https://doi.org/10.1557/adv.2015.24
Collections
Department of Food Engineering, Article
Suggestions
OpenMETU
Core
Understanding the Effects of Ion-Exchange in Titanosilicate ETS-10: A Joint Theoretical and Experimental Study
Koc, Mehmet; Galioglu, Sezin; Toffoli, Daniele; Toffoli, Hande; Akata Kurç, Burcu (2014-11-27)
Density functional theory (DFT) calculations within the gradient-corrected approximation (GGA) were carried out on two models of Engelhard titanosilicate (ETS-10) with the aim to elucidate the effect of ion exchange on the structural and electronic properties of the TiOTi quantum wire. The partial and full exchange of Na+ cations with alkaline, earth-alkaline, and transition metal ions have been investigated. The theoretical results have been complemented by experimental X-ray diffraction (XRD) and Raman da...
Preparation and thermal characterization of poly(2-vinylpyridine) copolymers coordinated to Cr nanoparticles
Öztürk, Yurdagül; Kayran, Ceyhan; Hacaloğlu, Jale (2015-06-01)
In this study, polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, polyisoprene-block-poly(2-vinylpyridne), PI-b-P2VP and poly(methyl metacrylate)-block-poly(2-vinylpyridine), PMMA-b-P2VP, coordinated to Cr metal were synthesized and characterized by Fourier transform infrared, transmission electron microscopy and direct pyrolysis mass spectrometry techniques. Both thermal degradation mechanism and thermal stability of P2VP blocks were affected by the coordination of Cr nanoparticles to nitrogen of pyridine...
Computational modelling of electro-active polymers
Dal, Sinan Fırat; Göktepe, Serdar; Department of Civil Engineering (2019)
This study is concerned with the stability of Electro-Active Polymers (EAPs) having geometries with periodic microstructures subjected to coupled electromechanical effects. For this purpose, coupled electromechanical equations, which are nonlinear, are discretized using the Finite Element Method (FEM) under the prescribed boundary conditions. EAPs are smart materials that may undergo large mechanical deformations when subjected to an electric field. Unlike many other materials that show permanent deformatio...
SYNTHESIS OF A NEW ELECTROCHROMIC POLYMER BASED ON TETRAPHENYLETHYLENE CORED TETRAKIS CARBAZOLE COMPLEX AND ITS ELECTROCHROMIC DEVICE APPLICATION
Carbas, Buket Bezgin; Odabas, Serhat; Turksoy, Figen; Tanyeli, Cihangir (2016-03-01)
Poly-1,1,2,2-tetrakis(4-9H-carbazol-9-yl)phenyl)ethene P(TCP) was successfully synthesized by electrochemical oxidation of corresponding monomer, namely, 1,1,2,2-tetrakis(4-9H-carbazol-9-yl)phenyl)ethene (TCP) using dichloromethane as the solvent and tetrabutylammonium hexafluorophosphate (TBAPF(6)) as supporting electrolyte. Spectroelectrochemical properties of P(TCP) were investigated in situ recording the electronic absorption spectra of the polymer film coated on indium-tin oxide (ITO) at various potent...
Data Acquisition System for Harmonic Motion Microwave Doppler Imaging
Tafreshi, Azadeh Kamali; Karadas, Muersel; Top, Can Baris; Gençer, Nevzat Güneri (2014-08-30)
Harmonic Motion Microwave Doppler Imaging (HMMDI) is a hybrid method proposed for breast tumor detection, which images the coupled dielectric and elastic properties of the tissue. In this paper, the performance of a data acquisition system for HMMDI method is evaluated on breast phantom materials. A breast fat phantom including fibro-glandular and tumor phantom regions is produced. The phantom is excited using a focused ultrasound probe and a microwave transmitter. The received microwave signal level is mea...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. N. Kahyaoğlu, “Integration of a Glutamate Sensitive Genetically Encoded Sensor Protein into Photocrosslinkable Hydrogel Optrodes,”
MRS ADVANCES
, pp. 539–546, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37760.