Multinucleon transfer in central collisions of U-238+U-238

Download
2017-08-14
Ayik, S.
YILMAZ, BÜLENT
YILMAZ TÜZÜN, ÖZGÜL
Umar, A. S.
Turan, Gürsevil
Quantal diffusion mechanism of nucleon exchange is studied in the central collisions of U-238 + U-238 in the framework of the stochastic mean-field (SMF) approach. For bombarding energies considered in this work, the dinuclear structure is maintained during the collision. Hence, it is possible to describe nucleon exchange as a diffusion process for mass and charge asymmetry. Quantal neutron and proton diffusion coefficients, including memory effects, are extracted from the SMF approach and the primary fragment distributions are calculated.
PHYSICAL REVIEW C

Suggestions

Multinucleon exchange in quasifission reactions
Ayik, S.; YILMAZ, BÜLENT; Yılmaz, Osman (2015-12-31)
The nucleon exchange mechanism is investigated in the central collisions of Ca-40+U-238 and Ca-48+U-238 systems near the quasifission regime in the framework of the stochastic mean-field (SMF) approach. Sufficiently below the fusion barrier, a dinuclear structure in the collisions is maintained to a large extent. Consequently, it is possible to describe nucleon exchange as a diffusion process familiar from deep-inelastic collisions. Diffusion coefficients for proton and neutron exchange are determined from ...
Multinucleon transfer in Ni-58+Ni-60 and Ni-60+Ni-60 in a stochastic mean-field approach
Yilmaz, B.; Ayik, S.; Yılmaz, Osman; Umar, A. S. (2018-09-07)
The multinucleon exchange mechanism in Ni-58 + Ni-60 and Ni-60 + Ni-60 collisions is analyzed in the framework of the stochastic mean-field approach. The results of calculations are compared with the time-dependent random-phase approximation (TDRPA) calculations and the recent data of Ni-58 + Ni-60. A good description of the data and a relatively good agreement with the TDRPA calculations are found.
Quantal diffusion description of multinucleon transfers in heavy-ion collisions
Ayik, S.; Yilmaz, B.; Yılmaz, Osman; Umar, A. S. (2018-05-29)
Employing the stochastic mean-field (SMF) approach, we develop a quantal diffusion description of the multi-nucleon transfer in heavy-ion collisions at finite impact parameters. The quantal transport coefficients are determined by the occupied single-particle wave functions of the time-dependent Hartree-Fock equations. As a result, the primary fragment mass and charge distribution functions are determined entirely in terms of the mean-field properties. This powerful description does not involve any adjustab...
Bioactive Surface Design Based on Functional Composite Electrospun Nanofibers for Biomolecule Immobilization and Biosensor Applications
Uzun, Sema Demirci; Kayaci, Fatma; UYAR, Tamer; TİMUR, SUNA; Toppare, Levent Kamil (2014-04-09)
The combination of nanomaterials and conducting polymers attracted remarkable attention for development of new immobilization matrices for enzymes. Hereby, an efficient surface design was investigated by modifying the graphite rod electrode surfaces with one-step electrospun nylon 6,6 nanofibers or 4% (w/w) multiwalled carbon nanotubes (MWCNTs) incorporating nylon 6,6 nanofibers (nylon 6,6/4MWCNT). High-resolution transmission electron microscopy study confirmed the successful incorporation of the MWCNTs in...
Multiphoton core ionization dynamics of polyatomic molecules
Toffolı, Danıele; Decleva, Piero (IOP Publishing, 2013-07-28)
The two-photon core ionization dynamics of gas-phase methane, carbon monoxide and nitrogen have been studied with a recent implementation of the lowest order perturbation theory in the framework of density functional theory and a multicentric basis set expansion of bound and scattering states. Ionization cross sections and angular asymmetry parameters have been calculated for the case of a single radiation beam and for both linear and circular light polarizations in the fixed nuclei approximation. Expected ...
Citation Formats
S. Ayik, B. YILMAZ, Ö. YILMAZ TÜZÜN, A. S. Umar, and G. Turan, “Multinucleon transfer in central collisions of U-238+U-238,” PHYSICAL REVIEW C, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37788.